Innate immune detection of lipid oxidation as a threat assessment strategy.


Journal

Nature reviews. Immunology
ISSN: 1474-1741
Titre abrégé: Nat Rev Immunol
Pays: England
ID NLM: 101124169

Informations de publication

Date de publication:
05 2022
Historique:
accepted: 15 08 2021
pubmed: 23 9 2021
medline: 6 5 2022
entrez: 22 9 2021
Statut: ppublish

Résumé

Oxidized phospholipids that result from tissue injury operate as immunomodulatory signals that, depending on the context, lead to proinflammatory or anti-inflammatory responses. In this Perspective, we posit that cells of the innate immune system use the presence of oxidized lipids as a generic indicator of threat to the host. Similarly to how pathogen-associated molecular patterns represent general indicators of microbial encounters, oxidized lipids may be the most common molecular feature of an injured tissue. Therefore, microbial detection in the absence of oxidized lipids may indicate encounters with avirulent microorganisms. By contrast, microbial detection and detection of oxidized lipids would indicate encounters with replicating microorganisms, thereby inducing a heightened inflammatory and defensive response. Here we review recent studies supporting this idea. We focus on the biology of oxidized phosphocholines, which have emerged as context-dependent regulators of immunity. We highlight emerging functions of oxidized phosphocholines in dendritic cells and macrophages that drive unique inflammasome and migratory activities and hypermetabolic states. We describe how these lipids hyperactivate dendritic cells to stimulate antitumour CD8

Identifiants

pubmed: 34548649
doi: 10.1038/s41577-021-00618-8
pii: 10.1038/s41577-021-00618-8
pmc: PMC8454293
doi:

Substances chimiques

Inflammasomes 0
Phospholipids 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

322-330

Subventions

Organisme : NIAID NIH HHS
ID : R01 AI093589
Pays : United States
Organisme : NIAID NIH HHS
ID : R56 AI093589
Pays : United States
Organisme : NIAID NIH HHS
ID : R37 AI116550
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK034854
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI133524
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI116550
Pays : United States

Informations de copyright

© 2021. Springer Nature Limited.

Références

Medzhitov, R. & Janeway, C. A. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).
pubmed: 9363937 doi: 10.1016/S0092-8674(00)80412-2
Janeway, C. A. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).
pubmed: 11861602 doi: 10.1146/annurev.immunol.20.083001.084359
Pasare, C. & Medzhitov, R. Control of B-cell responses by Toll-like receptors. Nature 438, 364–368 (2005).
pubmed: 16292312 doi: 10.1038/nature04267
Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).
pubmed: 25789684 pmcid: 4507498 doi: 10.1038/ni.3123
Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell 180, 1044–1066 (2020).
pubmed: 32164908 doi: 10.1016/j.cell.2020.02.041
Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat. Immunol. 11, 373–384 (2010).
pubmed: 20404851 doi: 10.1038/ni.1863
Vance, R. E. Immunology taught by bacteria. J. Clin. Immunol. 30, 507–511 (2010).
pubmed: 20373001 pmcid: 2900594 doi: 10.1007/s10875-010-9389-2
Miao, E. A. & Warren, S. E. Innate immune detection of bacterial virulence factors via the NLRC4 inflammasome. J. Clin. Immunol. 30, 502–506 (2010).
pubmed: 20349122 pmcid: 2993241 doi: 10.1007/s10875-010-9386-5
Vance, R. E., Isberg, R. R. & Portnoy, D. A. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6, 10–21 (2009).
pubmed: 19616762 pmcid: 2777727 doi: 10.1016/j.chom.2009.06.007
Lamkanfi, M. & Dixit, V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).
pubmed: 24855941 doi: 10.1016/j.cell.2014.04.007
Franchi, L., Muñoz-Planillo, R. & Núñez, G. Sensing and reacting to microbes through the inflammasomes. Nat. Immunol. 13, 325–332 (2012).
pubmed: 22430785 pmcid: 3449002 doi: 10.1038/ni.2231
Evavold, C. L. & Kagan, J. C. Inflammasomes: threat-assessment organelles of the innate immune system. Immunity 51, 609–624 (2019).
pubmed: 31473100 pmcid: 6801093 doi: 10.1016/j.immuni.2019.08.005
Kieser, K. J. & Kagan, J. C. Multi-receptor detection of individual bacterial products by the innate immune system. Nat. Rev. Immunol. 17, 376–390 (2017).
pubmed: 28461704 pmcid: 6698371 doi: 10.1038/nri.2017.25
Imai, Y. et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133, 235–249 (2008).
pubmed: 18423196 pmcid: 7112336 doi: 10.1016/j.cell.2008.02.043
Berliner, J. A. & Watson, A. D. A role for oxidized phospholipids in atherosclerosis. N. Engl. J. Med. 353, 9–11 (2005).
pubmed: 16000351 doi: 10.1056/NEJMp058118
Leitinger, N. Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr. Op. Lipidol. 14, 421–430 (2003).
doi: 10.1097/00041433-200310000-00002
Bochkov, V. N. et al. Generation and biological activities of oxidized phospholipids. Antioxid. Redox Signal. 12, 1009–1059 (2010).
pubmed: 19686040 pmcid: 3121779 doi: 10.1089/ars.2009.2597
Febbraio, M., Hajjar, D. P. & Silverstein, R. L. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest. 108, 785–791 (2001).
pubmed: 11560944 pmcid: 200943 doi: 10.1172/JCI14006
Kar, N. S., Ashraf, M. Z., Valiyaveettil, M. & Podrez, E. A. Mapping and characterization of the binding site for specific oxidized phospholipids and oxidized low density lipoprotein of scavenger receptor CD36. J. Biol. Chem. 283, 8765–8771 (2008).
pubmed: 18245080 pmcid: 2417175 doi: 10.1074/jbc.M709195200
Boullier, A. et al. Phosphocholine as a pattern recognition ligand for CD36. J. Lipid Res. 46, 969–976 (2005).
pubmed: 15722561 doi: 10.1194/jlr.M400496-JLR200
Zanoni, I., Tan, Y., di Gioia, M., Springstead, J. R. & Kagan, J. C. By capturing inflammatory lipids released from dying cells, the receptor CD14 induces inflammasome-dependent phagocyte hyperactivation. Immunity 47, 697–709.e3 (2017).
pubmed: 29045901 pmcid: 5747599 doi: 10.1016/j.immuni.2017.09.010
Tan, Y., Zanoni, I., Cullen, T. W., Goodman, A. L. & Kagan, J. C. Mechanisms of Toll-like receptor 4 endocytosis reveal a common immune-evasion strategy used by pathogenic and commensal bacteria. Immunity 43, 909–922 (2015).
pubmed: 26546281 pmcid: 4685471 doi: 10.1016/j.immuni.2015.10.008
Shirey, K. A. et al. The TLR4 antagonist eritoran protects mice from lethal influenza infection. Nature 497, 498–502 (2013).
pubmed: 23636320 pmcid: 3725830 doi: 10.1038/nature12118
Zanoni, I. et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352, 1232–1236 (2016).
pubmed: 27103670 pmcid: 5111085 doi: 10.1126/science.aaf3036
Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).
pubmed: 25119034 doi: 10.1038/nature13683
Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).
pubmed: 23887873 doi: 10.1126/science.1240248
Dingjan, I. et al. Lipid peroxidation causes endosomal antigen release for cross-presentation. Sci. Rep. 6, 22064 (2016).
pubmed: 26907999 pmcid: 4764948 doi: 10.1038/srep22064
Ashraf, M. Z. & Srivastava, S. In Lipoproteins: Role in Health and Diseases (ed. Kostner, G.) Ch. 17 (IntechOpen, 2012).
Matt, U., Sharif, O., Martins, R. & Knapp, S. Accumulating evidence for a role of oxidized phospholipids in infectious diseases. Cell. Mol. Life Sci. 72, 1059–1071 (2015).
pubmed: 25410378 doi: 10.1007/s00018-014-1780-3
Bochkov, V. et al. Pleiotropic effects of oxidized phospholipids. Free Radic. Biol. Med. 111, 6–24 (2017).
pubmed: 28027924 doi: 10.1016/j.freeradbiomed.2016.12.034
Knapp, S., Matt, U., Leitinger, N. & van der Poll, T. Oxidized phospholipids inhibit phagocytosis and impair outcome in gram-negative sepsis in vivo. J. Immunol. 178, 993–1001 (2007).
pubmed: 17202362 doi: 10.4049/jimmunol.178.2.993
Thimmulappa, R. K. et al. Oxidized phospholipids impair pulmonary antibacterial defenses: evidence in mice exposed to cigarette smoke. Biochem. Biophys. Res. Commun. 426, 253–259 (2012).
pubmed: 22935414 pmcid: 3495329 doi: 10.1016/j.bbrc.2012.08.076
Greenberg, M. E. et al. Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J. Exp. Med. 203, 2613–2625 (2006).
pubmed: 17101731 pmcid: 2118161 doi: 10.1084/jem.20060370
Zhivaki, D. et al. Inflammasomes within hyperactive murine dendritic cells stimulate long-lived T cell-mediated anti-tumor immunity. Cell Rep. 33, 108381 (2020).
pubmed: 33207188 pmcid: 7727444 doi: 10.1016/j.celrep.2020.108381
Garlanda, C., Dinarello, C. A. & Mantovani, A. The interleukin-1 family: back to the future. Immunity 39, 1003–1018 (2013).
pubmed: 24332029 pmcid: 3933951 doi: 10.1016/j.immuni.2013.11.010
Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).
pubmed: 12191486 doi: 10.1016/S1097-2765(02)00599-3
Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).
pubmed: 27281216 doi: 10.1038/nature18590
Heilig, R. et al. The gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur. J. Immunol. 48, 584–592 (2018).
pubmed: 29274245 doi: 10.1002/eji.201747404
Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44 (2017).
pubmed: 29195811 pmcid: 5773350 doi: 10.1016/j.immuni.2017.11.013
Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021).
pubmed: 33883744 pmcid: 8588876 doi: 10.1038/s41586-021-03478-3
Rühl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).
pubmed: 30467171 doi: 10.1126/science.aar7607
di Gioia, M. et al. Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation. Nat. Immunol. 21, 42–53 (2020).
pubmed: 31768073 doi: 10.1038/s41590-019-0539-2
Di Gioia, M. & Zanoni, I. Dooming phagocyte responses: inflammatory effects of endogenous oxidized phospholipids. Front. Endocrinol. https://doi.org/10.3389/fendo.2021.626842 (2021).
doi: 10.3389/fendo.2021.626842
Serbulea, V. et al. Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism. Mol. Metab. 7, 23–34 (2018).
pubmed: 29153923 doi: 10.1016/j.molmet.2017.11.002
Oskolkova, O. V. et al. Oxidized phospholipids are more potent antagonists of lipopolysaccharide than inducers of inflammation. J. Immunol. 185, 7706–7712 (2010).
pubmed: 21068406 doi: 10.4049/jimmunol.0903594
Bochkov, V. N. et al. Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature 419, 77–81 (2002).
pubmed: 12214235 doi: 10.1038/nature01023
Walton, K. A. et al. Specific phospholipid oxidation products inhibit ligand activation of Toll-like receptors 4 and 2. Arterioscler. Thromb. Vasc. Biol. 23, 1197–1203 (2003).
pubmed: 12775576 doi: 10.1161/01.ATV.0000079340.80744.B8
Erridge, C., Kennedy, S., Spickett, C. M. & Webb, D. J. Oxidized phospholipid inhibition of Toll-like receptor (TLR) signaling is restricted to TLR2 and TLR4: roles for CD14, LPS-binding protein, and MD2 as targets for specificity of inhibition. J. Biol. Chem. 283, 24748–24759 (2008).
pubmed: 18559343 pmcid: 3259833 doi: 10.1074/jbc.M800352200
Chu, L. H. et al. The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages. Nat. Commun. 9, 996 (2018).
pubmed: 29520027 pmcid: 5843631 doi: 10.1038/s41467-018-03409-3
Bretscher, P. et al. Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2. EMBO Mol. Med. 7, 593–607 (2015).
pubmed: 25770125 pmcid: 4492819 doi: 10.15252/emmm.201404702
Mendel, I. et al. A lecinoxoid, an oxidized phospholipid small molecule, constrains CNS autoimmune disease. J. Neuroimmunol. 226, 126–135 (2010).
pubmed: 20663571 doi: 10.1016/j.jneuroim.2010.06.011
Mendel, I., Yacov, N., Shoham, A., Ishai, E. & Breitbart, E. Treatment with oxidized phospholipids directly inhibits nonalcoholic steatohepatitis and liver fibrosis without affecting steatosis. Dig. Dis. Sci. 61, 2545–2553 (2016).
pubmed: 27074921 pmcid: 4980417 doi: 10.1007/s10620-016-4159-5
Jain, A., Song, R., Wakeland, E. K. & Pasare, C. T cell-intrinsic IL-1R signaling licenses effector cytokine production by memory CD4 T cells. Nat. Commun. 9, 1–13 (2018).
doi: 10.1038/s41467-018-05489-7
Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).
pubmed: 28678778 pmcid: 5577644 doi: 10.1038/nature22991
Castle, J. C. et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 72, 1081–1091 (2012).
pubmed: 22237626 doi: 10.1158/0008-5472.CAN-11-3722
Hu, Z. et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat. Med. 27, 515–525 (2021).
pubmed: 33479501 pmcid: 8273876 doi: 10.1038/s41591-020-01206-4
Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1Β-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).
pubmed: 19767732 doi: 10.1038/nm.2028
Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691–1701 (2005).
pubmed: 16365148 pmcid: 2212968 doi: 10.1084/jem.20050915
Ernandes, M. J. & Kagan, J. C. Interferon-independent restriction of RNA virus entry and replication by a class of damage-associated molecular patterns. mBio 12, e00584–21 (2021).
pubmed: 33849978 pmcid: 8092255 doi: 10.1128/mBio.00584-21
Ke, Y. et al. Elevated truncated oxidized phospholipids as a factor exacerbating ALI in the aging lungs. FASEB J. 33, 3887–3900 (2019).
pubmed: 30521374 doi: 10.1096/fj.201800981R
Slatter, D. A. et al. Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies. JCI Insight 3, e98459 (2018).
pmcid: 5926910 doi: 10.1172/jci.insight.98459
O’Donnell, V. B., Aldrovandi, N., Murphy, R. C. & Krönke, G. Enzymatically oxidized phospholipids assume center stage as essential regulators of innate immunity and cell death. Sci. Signal. 12, eaau2293 (2019).
pubmed: 30914483 doi: 10.1126/scisignal.aau2293
Wu, C. et al. Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity 50, 1401 (2019).
pubmed: 31076358 pmcid: 6791531 doi: 10.1016/j.immuni.2019.04.003
Zhivaki, D. & Kagan, J. C. NLRP3 inflammasomes that induce antitumor immunity. Trends Immunol. 42, 575–589 (2021).
pubmed: 34034975 doi: 10.1016/j.it.2021.05.001
Wolf, A. J. et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 166, 624–636 (2016).
pubmed: 27374331 pmcid: 5534359 doi: 10.1016/j.cell.2016.05.076
Shimada, T. et al. Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1β secretion. Cell Host Microbe 7, 38–49 (2010).
pubmed: 20114027 pmcid: 2818986 doi: 10.1016/j.chom.2009.12.008
Hatscher, L. et al. Select hyperactivating NLRP3 ligands enhance the TH1- and TH17-inducing potential of human type 2 conventional dendritic cells. Sci. Signal. 14, eabe1757 (2021).
pubmed: 33906973 doi: 10.1126/scisignal.abe1757
Brubaker, S. W., Bonham, K. S., Zanoni, I. & Kagan, J. C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290 (2015).
pubmed: 25581309 pmcid: 5146691 doi: 10.1146/annurev-immunol-032414-112240
Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).
pubmed: 11951032 doi: 10.1126/science.1071059
Kagan, J. C. Lipopolysaccharide detection across the kingdoms of life. Trends Immunol. 38, 696–704 (2017).
pubmed: 28551077 pmcid: 5624813 doi: 10.1016/j.it.2017.05.001
Gauthier, A. E. et al. Deep-sea microbes as tools to refine the rules of innate immune pattern recognition. Sci. Immunol. 6, eabe0531 (2021).
pubmed: 33712473 pmcid: 8367048 doi: 10.1126/sciimmunol.abe0531
Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).
pubmed: 17032697 doi: 10.1189/jlb.0306164
Lorent, J. H. et al. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16, 644–652 (2020).
pubmed: 32367017 pmcid: 7246138 doi: 10.1038/s41589-020-0529-6
Bernhard, W. et al. Phosphatidylcholine molecular species in lung surfactant composition in relation to respiratory rate and lung development. Am. J. Resp. Cell Mol. Biol. 25, 725–731 (2001).
doi: 10.1165/ajrcmb.25.6.4616
Bergmark, C. et al. A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. J. Lipid Res. 49, 2230–2239 (2008).
pubmed: 18594118 doi: 10.1194/jlr.M800174-JLR200
O’Donnell, V. B., Rossjohn, J. & Wakelam, M. J. O. Phospholipid signaling in innate immune cells. J. Clin. Invest. 128, 2670–2679 (2018).
pubmed: 29683435 pmcid: 6026006 doi: 10.1172/JCI97944
Hajeyah, A. A., Griffiths, W. J., Wang, Y., Finch, A. J. & O’Donnell, V. B. The biosynthesis of enzymatically oxidized lipids. Front. Endocrinol. https://doi.org/10.3389/fendo.2020.591819 (2020).
doi: 10.3389/fendo.2020.591819
Huber, J. et al. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler. Thromb. Vasc. Biol. 22, 101–107 (2002).
pubmed: 11788468 doi: 10.1161/hq0102.101525
Tsiantoulas, D. et al. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J. Lipid Res. 56, 440–448 (2015).
pubmed: 25525116 pmcid: 4306697 doi: 10.1194/jlr.P054569
Watson, A. D. et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem. 272, 13597–13607 (1997).
pubmed: 9153208 doi: 10.1074/jbc.272.21.13597
Qin, J., Goswami, R., Balabanov, R. & Dawson, G. Oxidized phosphatidylcholine is a marker for neuroinflammation in multiple sclerosis brain. J. Neurosci. Res. 85, 977–984 (2007).
pubmed: 17304573 doi: 10.1002/jnr.21206
Kanter, J. L. et al. Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat. Med. 12, 138–143 (2006).
pubmed: 16341241 doi: 10.1038/nm1344
Sun, X. et al. Neutralization of oxidized phospholipids ameliorates non-alcoholic steatohepatitis. Cell Metab. 31, 189–206.e8 (2020).
pubmed: 31761566 doi: 10.1016/j.cmet.2019.10.014
Bochkov, V. N. et al. Oxidized phospholipids stimulate angiogenesis via autocrine mechanisms, implicating a novel role for lipid oxidation in the evolution of atherosclerotic lesions. Circ. Res. 99, 900–908 (2006).
pubmed: 16973904 doi: 10.1161/01.RES.0000245485.04489.ee
Bochkov, V. et al. Novel immune assay for quantification of plasma protective capacity against oxidized phospholipids. Biomark. Med. 10, 797–810 (2016).
pubmed: 27416002 doi: 10.2217/bmm-2016-0096
Gruber, F. et al. Photooxidation generates biologically active phospholipids that induce heme oxygenase-1 in skin cells. J. Biol. Chem. 282, 16934–16941 (2007).
pubmed: 17449870 doi: 10.1074/jbc.M702523200
Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolemic mice. Nature 558, 301 (2018).
pubmed: 29875409 pmcid: 6033669 doi: 10.1038/s41586-018-0198-8
Ståhle, M. et al. Therapeutic antibody against phosphorylcholine preserves coronary function and attenuates vascular
pubmed: 32368695 pmcid: 7188869 doi: 10.1016/j.jacbts.2020.01.008
Inaba, K. et al. The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med. 191, 927–936 (2000).
pubmed: 10727455 pmcid: 2193115 doi: 10.1084/jem.191.6.927
Mellman, I. & Steinman, R. M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).
pubmed: 11509172 doi: 10.1016/S0092-8674(01)00449-4
Joffre, O., Nolte, M. A., Spörri, R. & Reis e Sousa, C. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol. Rev. 227, 234–247 (2009).
pubmed: 19120488 doi: 10.1111/j.1600-065X.2008.00718.x
Sallusto, F. & Lanzavecchia, A. The instructive role of dendritic cells on T-cell responses. Arthr. Res. 4, S127–S132 (2002).
doi: 10.1186/ar567
Sabado, R. L., Balan, S. & Bhardwaj, N. Dendritic cell-based immunotherapy. Cell Res. 27, 74–95 (2017).
pubmed: 28025976 doi: 10.1038/cr.2016.157
Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).
pubmed: 31467405 doi: 10.1038/s41577-019-0210-z
Draube, A. et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS ONE 6, e18801 (2011).
pubmed: 21533099 pmcid: 3080391 doi: 10.1371/journal.pone.0018801
Hu, Z., Ott, P. A. & Wu, C. J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol. 18, 168–182 (2017).
pubmed: 29226910 pmcid: 6508552 doi: 10.1038/nri.2017.131
Ben-Sasson, S. Z. et al. IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc. Natl Acad. Sci. USA 106, 7119–7124 (2009).
pubmed: 19359475 pmcid: 2678417 doi: 10.1073/pnas.0902745106
Ben-Sasson, S. Z. et al. IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells. J. Exp. Med. 210, 491–502 (2013).
pubmed: 23460726 pmcid: 3600912 doi: 10.1084/jem.20122006
Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193–1206 (2014).
pubmed: 24630722 pmcid: 4000066 doi: 10.1016/j.cell.2014.02.008
Kagan, J. C., Magupalli, V. G. & Wu, H. SMOCs: supramolecular organizing centres that control innate immunity. Nat. Rev. Immunol. 14, 821–826 (2014).
pubmed: 25359439 pmcid: 4373346 doi: 10.1038/nri3757
Mempel, T. R., Henrickson, S. E. & von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).
pubmed: 14712275 doi: 10.1038/nature02238
Eisenbarth, S. C. et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).
pubmed: 18496530 pmcid: 4804622 doi: 10.1038/nature06939
Kool, M. et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 181, 3755–3759 (2008).
pubmed: 18768827 doi: 10.4049/jimmunol.181.6.3755
Marrack, P., McKee, A. S. & Munks, M. W. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 9, 287–293 (2009).
pubmed: 19247370 pmcid: 3147301 doi: 10.1038/nri2510

Auteurs

Dania Zhivaki (D)

Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.

Jonathan C Kagan (JC)

Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA. jonathan.kagan@childrens.harvard.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH