Innate immune detection of lipid oxidation as a threat assessment strategy.
Journal
Nature reviews. Immunology
ISSN: 1474-1741
Titre abrégé: Nat Rev Immunol
Pays: England
ID NLM: 101124169
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
accepted:
15
08
2021
pubmed:
23
9
2021
medline:
6
5
2022
entrez:
22
9
2021
Statut:
ppublish
Résumé
Oxidized phospholipids that result from tissue injury operate as immunomodulatory signals that, depending on the context, lead to proinflammatory or anti-inflammatory responses. In this Perspective, we posit that cells of the innate immune system use the presence of oxidized lipids as a generic indicator of threat to the host. Similarly to how pathogen-associated molecular patterns represent general indicators of microbial encounters, oxidized lipids may be the most common molecular feature of an injured tissue. Therefore, microbial detection in the absence of oxidized lipids may indicate encounters with avirulent microorganisms. By contrast, microbial detection and detection of oxidized lipids would indicate encounters with replicating microorganisms, thereby inducing a heightened inflammatory and defensive response. Here we review recent studies supporting this idea. We focus on the biology of oxidized phosphocholines, which have emerged as context-dependent regulators of immunity. We highlight emerging functions of oxidized phosphocholines in dendritic cells and macrophages that drive unique inflammasome and migratory activities and hypermetabolic states. We describe how these lipids hyperactivate dendritic cells to stimulate antitumour CD8
Identifiants
pubmed: 34548649
doi: 10.1038/s41577-021-00618-8
pii: 10.1038/s41577-021-00618-8
pmc: PMC8454293
doi:
Substances chimiques
Inflammasomes
0
Phospholipids
0
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
322-330Subventions
Organisme : NIAID NIH HHS
ID : R01 AI093589
Pays : United States
Organisme : NIAID NIH HHS
ID : R56 AI093589
Pays : United States
Organisme : NIAID NIH HHS
ID : R37 AI116550
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK034854
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI133524
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI116550
Pays : United States
Informations de copyright
© 2021. Springer Nature Limited.
Références
Medzhitov, R. & Janeway, C. A. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).
pubmed: 9363937
doi: 10.1016/S0092-8674(00)80412-2
Janeway, C. A. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).
pubmed: 11861602
doi: 10.1146/annurev.immunol.20.083001.084359
Pasare, C. & Medzhitov, R. Control of B-cell responses by Toll-like receptors. Nature 438, 364–368 (2005).
pubmed: 16292312
doi: 10.1038/nature04267
Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).
pubmed: 25789684
pmcid: 4507498
doi: 10.1038/ni.3123
Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell 180, 1044–1066 (2020).
pubmed: 32164908
doi: 10.1016/j.cell.2020.02.041
Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat. Immunol. 11, 373–384 (2010).
pubmed: 20404851
doi: 10.1038/ni.1863
Vance, R. E. Immunology taught by bacteria. J. Clin. Immunol. 30, 507–511 (2010).
pubmed: 20373001
pmcid: 2900594
doi: 10.1007/s10875-010-9389-2
Miao, E. A. & Warren, S. E. Innate immune detection of bacterial virulence factors via the NLRC4 inflammasome. J. Clin. Immunol. 30, 502–506 (2010).
pubmed: 20349122
pmcid: 2993241
doi: 10.1007/s10875-010-9386-5
Vance, R. E., Isberg, R. R. & Portnoy, D. A. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6, 10–21 (2009).
pubmed: 19616762
pmcid: 2777727
doi: 10.1016/j.chom.2009.06.007
Lamkanfi, M. & Dixit, V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).
pubmed: 24855941
doi: 10.1016/j.cell.2014.04.007
Franchi, L., Muñoz-Planillo, R. & Núñez, G. Sensing and reacting to microbes through the inflammasomes. Nat. Immunol. 13, 325–332 (2012).
pubmed: 22430785
pmcid: 3449002
doi: 10.1038/ni.2231
Evavold, C. L. & Kagan, J. C. Inflammasomes: threat-assessment organelles of the innate immune system. Immunity 51, 609–624 (2019).
pubmed: 31473100
pmcid: 6801093
doi: 10.1016/j.immuni.2019.08.005
Kieser, K. J. & Kagan, J. C. Multi-receptor detection of individual bacterial products by the innate immune system. Nat. Rev. Immunol. 17, 376–390 (2017).
pubmed: 28461704
pmcid: 6698371
doi: 10.1038/nri.2017.25
Imai, Y. et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133, 235–249 (2008).
pubmed: 18423196
pmcid: 7112336
doi: 10.1016/j.cell.2008.02.043
Berliner, J. A. & Watson, A. D. A role for oxidized phospholipids in atherosclerosis. N. Engl. J. Med. 353, 9–11 (2005).
pubmed: 16000351
doi: 10.1056/NEJMp058118
Leitinger, N. Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr. Op. Lipidol. 14, 421–430 (2003).
doi: 10.1097/00041433-200310000-00002
Bochkov, V. N. et al. Generation and biological activities of oxidized phospholipids. Antioxid. Redox Signal. 12, 1009–1059 (2010).
pubmed: 19686040
pmcid: 3121779
doi: 10.1089/ars.2009.2597
Febbraio, M., Hajjar, D. P. & Silverstein, R. L. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest. 108, 785–791 (2001).
pubmed: 11560944
pmcid: 200943
doi: 10.1172/JCI14006
Kar, N. S., Ashraf, M. Z., Valiyaveettil, M. & Podrez, E. A. Mapping and characterization of the binding site for specific oxidized phospholipids and oxidized low density lipoprotein of scavenger receptor CD36. J. Biol. Chem. 283, 8765–8771 (2008).
pubmed: 18245080
pmcid: 2417175
doi: 10.1074/jbc.M709195200
Boullier, A. et al. Phosphocholine as a pattern recognition ligand for CD36. J. Lipid Res. 46, 969–976 (2005).
pubmed: 15722561
doi: 10.1194/jlr.M400496-JLR200
Zanoni, I., Tan, Y., di Gioia, M., Springstead, J. R. & Kagan, J. C. By capturing inflammatory lipids released from dying cells, the receptor CD14 induces inflammasome-dependent phagocyte hyperactivation. Immunity 47, 697–709.e3 (2017).
pubmed: 29045901
pmcid: 5747599
doi: 10.1016/j.immuni.2017.09.010
Tan, Y., Zanoni, I., Cullen, T. W., Goodman, A. L. & Kagan, J. C. Mechanisms of Toll-like receptor 4 endocytosis reveal a common immune-evasion strategy used by pathogenic and commensal bacteria. Immunity 43, 909–922 (2015).
pubmed: 26546281
pmcid: 4685471
doi: 10.1016/j.immuni.2015.10.008
Shirey, K. A. et al. The TLR4 antagonist eritoran protects mice from lethal influenza infection. Nature 497, 498–502 (2013).
pubmed: 23636320
pmcid: 3725830
doi: 10.1038/nature12118
Zanoni, I. et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352, 1232–1236 (2016).
pubmed: 27103670
pmcid: 5111085
doi: 10.1126/science.aaf3036
Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).
pubmed: 25119034
doi: 10.1038/nature13683
Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).
pubmed: 23887873
doi: 10.1126/science.1240248
Dingjan, I. et al. Lipid peroxidation causes endosomal antigen release for cross-presentation. Sci. Rep. 6, 22064 (2016).
pubmed: 26907999
pmcid: 4764948
doi: 10.1038/srep22064
Ashraf, M. Z. & Srivastava, S. In Lipoproteins: Role in Health and Diseases (ed. Kostner, G.) Ch. 17 (IntechOpen, 2012).
Matt, U., Sharif, O., Martins, R. & Knapp, S. Accumulating evidence for a role of oxidized phospholipids in infectious diseases. Cell. Mol. Life Sci. 72, 1059–1071 (2015).
pubmed: 25410378
doi: 10.1007/s00018-014-1780-3
Bochkov, V. et al. Pleiotropic effects of oxidized phospholipids. Free Radic. Biol. Med. 111, 6–24 (2017).
pubmed: 28027924
doi: 10.1016/j.freeradbiomed.2016.12.034
Knapp, S., Matt, U., Leitinger, N. & van der Poll, T. Oxidized phospholipids inhibit phagocytosis and impair outcome in gram-negative sepsis in vivo. J. Immunol. 178, 993–1001 (2007).
pubmed: 17202362
doi: 10.4049/jimmunol.178.2.993
Thimmulappa, R. K. et al. Oxidized phospholipids impair pulmonary antibacterial defenses: evidence in mice exposed to cigarette smoke. Biochem. Biophys. Res. Commun. 426, 253–259 (2012).
pubmed: 22935414
pmcid: 3495329
doi: 10.1016/j.bbrc.2012.08.076
Greenberg, M. E. et al. Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J. Exp. Med. 203, 2613–2625 (2006).
pubmed: 17101731
pmcid: 2118161
doi: 10.1084/jem.20060370
Zhivaki, D. et al. Inflammasomes within hyperactive murine dendritic cells stimulate long-lived T cell-mediated anti-tumor immunity. Cell Rep. 33, 108381 (2020).
pubmed: 33207188
pmcid: 7727444
doi: 10.1016/j.celrep.2020.108381
Garlanda, C., Dinarello, C. A. & Mantovani, A. The interleukin-1 family: back to the future. Immunity 39, 1003–1018 (2013).
pubmed: 24332029
pmcid: 3933951
doi: 10.1016/j.immuni.2013.11.010
Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).
pubmed: 12191486
doi: 10.1016/S1097-2765(02)00599-3
Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).
pubmed: 27281216
doi: 10.1038/nature18590
Heilig, R. et al. The gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur. J. Immunol. 48, 584–592 (2018).
pubmed: 29274245
doi: 10.1002/eji.201747404
Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44 (2017).
pubmed: 29195811
pmcid: 5773350
doi: 10.1016/j.immuni.2017.11.013
Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021).
pubmed: 33883744
pmcid: 8588876
doi: 10.1038/s41586-021-03478-3
Rühl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).
pubmed: 30467171
doi: 10.1126/science.aar7607
di Gioia, M. et al. Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation. Nat. Immunol. 21, 42–53 (2020).
pubmed: 31768073
doi: 10.1038/s41590-019-0539-2
Di Gioia, M. & Zanoni, I. Dooming phagocyte responses: inflammatory effects of endogenous oxidized phospholipids. Front. Endocrinol. https://doi.org/10.3389/fendo.2021.626842 (2021).
doi: 10.3389/fendo.2021.626842
Serbulea, V. et al. Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism. Mol. Metab. 7, 23–34 (2018).
pubmed: 29153923
doi: 10.1016/j.molmet.2017.11.002
Oskolkova, O. V. et al. Oxidized phospholipids are more potent antagonists of lipopolysaccharide than inducers of inflammation. J. Immunol. 185, 7706–7712 (2010).
pubmed: 21068406
doi: 10.4049/jimmunol.0903594
Bochkov, V. N. et al. Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature 419, 77–81 (2002).
pubmed: 12214235
doi: 10.1038/nature01023
Walton, K. A. et al. Specific phospholipid oxidation products inhibit ligand activation of Toll-like receptors 4 and 2. Arterioscler. Thromb. Vasc. Biol. 23, 1197–1203 (2003).
pubmed: 12775576
doi: 10.1161/01.ATV.0000079340.80744.B8
Erridge, C., Kennedy, S., Spickett, C. M. & Webb, D. J. Oxidized phospholipid inhibition of Toll-like receptor (TLR) signaling is restricted to TLR2 and TLR4: roles for CD14, LPS-binding protein, and MD2 as targets for specificity of inhibition. J. Biol. Chem. 283, 24748–24759 (2008).
pubmed: 18559343
pmcid: 3259833
doi: 10.1074/jbc.M800352200
Chu, L. H. et al. The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages. Nat. Commun. 9, 996 (2018).
pubmed: 29520027
pmcid: 5843631
doi: 10.1038/s41467-018-03409-3
Bretscher, P. et al. Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2. EMBO Mol. Med. 7, 593–607 (2015).
pubmed: 25770125
pmcid: 4492819
doi: 10.15252/emmm.201404702
Mendel, I. et al. A lecinoxoid, an oxidized phospholipid small molecule, constrains CNS autoimmune disease. J. Neuroimmunol. 226, 126–135 (2010).
pubmed: 20663571
doi: 10.1016/j.jneuroim.2010.06.011
Mendel, I., Yacov, N., Shoham, A., Ishai, E. & Breitbart, E. Treatment with oxidized phospholipids directly inhibits nonalcoholic steatohepatitis and liver fibrosis without affecting steatosis. Dig. Dis. Sci. 61, 2545–2553 (2016).
pubmed: 27074921
pmcid: 4980417
doi: 10.1007/s10620-016-4159-5
Jain, A., Song, R., Wakeland, E. K. & Pasare, C. T cell-intrinsic IL-1R signaling licenses effector cytokine production by memory CD4 T cells. Nat. Commun. 9, 1–13 (2018).
doi: 10.1038/s41467-018-05489-7
Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).
pubmed: 28678778
pmcid: 5577644
doi: 10.1038/nature22991
Castle, J. C. et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 72, 1081–1091 (2012).
pubmed: 22237626
doi: 10.1158/0008-5472.CAN-11-3722
Hu, Z. et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat. Med. 27, 515–525 (2021).
pubmed: 33479501
pmcid: 8273876
doi: 10.1038/s41591-020-01206-4
Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1Β-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).
pubmed: 19767732
doi: 10.1038/nm.2028
Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691–1701 (2005).
pubmed: 16365148
pmcid: 2212968
doi: 10.1084/jem.20050915
Ernandes, M. J. & Kagan, J. C. Interferon-independent restriction of RNA virus entry and replication by a class of damage-associated molecular patterns. mBio 12, e00584–21 (2021).
pubmed: 33849978
pmcid: 8092255
doi: 10.1128/mBio.00584-21
Ke, Y. et al. Elevated truncated oxidized phospholipids as a factor exacerbating ALI in the aging lungs. FASEB J. 33, 3887–3900 (2019).
pubmed: 30521374
doi: 10.1096/fj.201800981R
Slatter, D. A. et al. Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies. JCI Insight 3, e98459 (2018).
pmcid: 5926910
doi: 10.1172/jci.insight.98459
O’Donnell, V. B., Aldrovandi, N., Murphy, R. C. & Krönke, G. Enzymatically oxidized phospholipids assume center stage as essential regulators of innate immunity and cell death. Sci. Signal. 12, eaau2293 (2019).
pubmed: 30914483
doi: 10.1126/scisignal.aau2293
Wu, C. et al. Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity 50, 1401 (2019).
pubmed: 31076358
pmcid: 6791531
doi: 10.1016/j.immuni.2019.04.003
Zhivaki, D. & Kagan, J. C. NLRP3 inflammasomes that induce antitumor immunity. Trends Immunol. 42, 575–589 (2021).
pubmed: 34034975
doi: 10.1016/j.it.2021.05.001
Wolf, A. J. et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 166, 624–636 (2016).
pubmed: 27374331
pmcid: 5534359
doi: 10.1016/j.cell.2016.05.076
Shimada, T. et al. Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1β secretion. Cell Host Microbe 7, 38–49 (2010).
pubmed: 20114027
pmcid: 2818986
doi: 10.1016/j.chom.2009.12.008
Hatscher, L. et al. Select hyperactivating NLRP3 ligands enhance the TH1- and TH17-inducing potential of human type 2 conventional dendritic cells. Sci. Signal. 14, eabe1757 (2021).
pubmed: 33906973
doi: 10.1126/scisignal.abe1757
Brubaker, S. W., Bonham, K. S., Zanoni, I. & Kagan, J. C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290 (2015).
pubmed: 25581309
pmcid: 5146691
doi: 10.1146/annurev-immunol-032414-112240
Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).
pubmed: 11951032
doi: 10.1126/science.1071059
Kagan, J. C. Lipopolysaccharide detection across the kingdoms of life. Trends Immunol. 38, 696–704 (2017).
pubmed: 28551077
pmcid: 5624813
doi: 10.1016/j.it.2017.05.001
Gauthier, A. E. et al. Deep-sea microbes as tools to refine the rules of innate immune pattern recognition. Sci. Immunol. 6, eabe0531 (2021).
pubmed: 33712473
pmcid: 8367048
doi: 10.1126/sciimmunol.abe0531
Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).
pubmed: 17032697
doi: 10.1189/jlb.0306164
Lorent, J. H. et al. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16, 644–652 (2020).
pubmed: 32367017
pmcid: 7246138
doi: 10.1038/s41589-020-0529-6
Bernhard, W. et al. Phosphatidylcholine molecular species in lung surfactant composition in relation to respiratory rate and lung development. Am. J. Resp. Cell Mol. Biol. 25, 725–731 (2001).
doi: 10.1165/ajrcmb.25.6.4616
Bergmark, C. et al. A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. J. Lipid Res. 49, 2230–2239 (2008).
pubmed: 18594118
doi: 10.1194/jlr.M800174-JLR200
O’Donnell, V. B., Rossjohn, J. & Wakelam, M. J. O. Phospholipid signaling in innate immune cells. J. Clin. Invest. 128, 2670–2679 (2018).
pubmed: 29683435
pmcid: 6026006
doi: 10.1172/JCI97944
Hajeyah, A. A., Griffiths, W. J., Wang, Y., Finch, A. J. & O’Donnell, V. B. The biosynthesis of enzymatically oxidized lipids. Front. Endocrinol. https://doi.org/10.3389/fendo.2020.591819 (2020).
doi: 10.3389/fendo.2020.591819
Huber, J. et al. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler. Thromb. Vasc. Biol. 22, 101–107 (2002).
pubmed: 11788468
doi: 10.1161/hq0102.101525
Tsiantoulas, D. et al. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J. Lipid Res. 56, 440–448 (2015).
pubmed: 25525116
pmcid: 4306697
doi: 10.1194/jlr.P054569
Watson, A. D. et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem. 272, 13597–13607 (1997).
pubmed: 9153208
doi: 10.1074/jbc.272.21.13597
Qin, J., Goswami, R., Balabanov, R. & Dawson, G. Oxidized phosphatidylcholine is a marker for neuroinflammation in multiple sclerosis brain. J. Neurosci. Res. 85, 977–984 (2007).
pubmed: 17304573
doi: 10.1002/jnr.21206
Kanter, J. L. et al. Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat. Med. 12, 138–143 (2006).
pubmed: 16341241
doi: 10.1038/nm1344
Sun, X. et al. Neutralization of oxidized phospholipids ameliorates non-alcoholic steatohepatitis. Cell Metab. 31, 189–206.e8 (2020).
pubmed: 31761566
doi: 10.1016/j.cmet.2019.10.014
Bochkov, V. N. et al. Oxidized phospholipids stimulate angiogenesis via autocrine mechanisms, implicating a novel role for lipid oxidation in the evolution of atherosclerotic lesions. Circ. Res. 99, 900–908 (2006).
pubmed: 16973904
doi: 10.1161/01.RES.0000245485.04489.ee
Bochkov, V. et al. Novel immune assay for quantification of plasma protective capacity against oxidized phospholipids. Biomark. Med. 10, 797–810 (2016).
pubmed: 27416002
doi: 10.2217/bmm-2016-0096
Gruber, F. et al. Photooxidation generates biologically active phospholipids that induce heme oxygenase-1 in skin cells. J. Biol. Chem. 282, 16934–16941 (2007).
pubmed: 17449870
doi: 10.1074/jbc.M702523200
Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolemic mice. Nature 558, 301 (2018).
pubmed: 29875409
pmcid: 6033669
doi: 10.1038/s41586-018-0198-8
Ståhle, M. et al. Therapeutic antibody against phosphorylcholine preserves coronary function and attenuates vascular
pubmed: 32368695
pmcid: 7188869
doi: 10.1016/j.jacbts.2020.01.008
Inaba, K. et al. The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med. 191, 927–936 (2000).
pubmed: 10727455
pmcid: 2193115
doi: 10.1084/jem.191.6.927
Mellman, I. & Steinman, R. M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).
pubmed: 11509172
doi: 10.1016/S0092-8674(01)00449-4
Joffre, O., Nolte, M. A., Spörri, R. & Reis e Sousa, C. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol. Rev. 227, 234–247 (2009).
pubmed: 19120488
doi: 10.1111/j.1600-065X.2008.00718.x
Sallusto, F. & Lanzavecchia, A. The instructive role of dendritic cells on T-cell responses. Arthr. Res. 4, S127–S132 (2002).
doi: 10.1186/ar567
Sabado, R. L., Balan, S. & Bhardwaj, N. Dendritic cell-based immunotherapy. Cell Res. 27, 74–95 (2017).
pubmed: 28025976
doi: 10.1038/cr.2016.157
Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).
pubmed: 31467405
doi: 10.1038/s41577-019-0210-z
Draube, A. et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS ONE 6, e18801 (2011).
pubmed: 21533099
pmcid: 3080391
doi: 10.1371/journal.pone.0018801
Hu, Z., Ott, P. A. & Wu, C. J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol. 18, 168–182 (2017).
pubmed: 29226910
pmcid: 6508552
doi: 10.1038/nri.2017.131
Ben-Sasson, S. Z. et al. IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc. Natl Acad. Sci. USA 106, 7119–7124 (2009).
pubmed: 19359475
pmcid: 2678417
doi: 10.1073/pnas.0902745106
Ben-Sasson, S. Z. et al. IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells. J. Exp. Med. 210, 491–502 (2013).
pubmed: 23460726
pmcid: 3600912
doi: 10.1084/jem.20122006
Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193–1206 (2014).
pubmed: 24630722
pmcid: 4000066
doi: 10.1016/j.cell.2014.02.008
Kagan, J. C., Magupalli, V. G. & Wu, H. SMOCs: supramolecular organizing centres that control innate immunity. Nat. Rev. Immunol. 14, 821–826 (2014).
pubmed: 25359439
pmcid: 4373346
doi: 10.1038/nri3757
Mempel, T. R., Henrickson, S. E. & von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).
pubmed: 14712275
doi: 10.1038/nature02238
Eisenbarth, S. C. et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).
pubmed: 18496530
pmcid: 4804622
doi: 10.1038/nature06939
Kool, M. et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 181, 3755–3759 (2008).
pubmed: 18768827
doi: 10.4049/jimmunol.181.6.3755
Marrack, P., McKee, A. S. & Munks, M. W. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 9, 287–293 (2009).
pubmed: 19247370
pmcid: 3147301
doi: 10.1038/nri2510