High-Dimensional Precision Medicine From Patient-Derived Xenografts.
Biomarkers
Deep learning autoencoders
Machine learning
Outcome weighted learning
Precision medicine
Q-learning
Journal
Journal of the American Statistical Association
ISSN: 0162-1459
Titre abrégé: J Am Stat Assoc
Pays: United States
ID NLM: 01510020R
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
22
9
2021
pubmed:
23
9
2021
medline:
23
9
2021
Statut:
ppublish
Résumé
The complexity of human cancer often results in significant heterogeneity in response to treatment. Precision medicine offers the potential to improve patient outcomes by leveraging this heterogeneity. Individualized treatment rules (ITRs) formalize precision medicine as maps from the patient covariate space into the space of allowable treatments. The optimal ITR is that which maximizes the mean of a clinical outcome in a population of interest. Patient-derived xenograft (PDX) studies permit the evaluation of multiple treatments within a single tumor, and thus are ideally suited for estimating optimal ITRs. PDX data are characterized by correlated outcomes, a high-dimensional feature space, and a large number of treatments. Here we explore machine learning methods for estimating optimal ITRs from PDX data. We analyze data from a large PDX study to identify biomarkers that are informative for developing personalized treatment recommendations in multiple cancers. We estimate optimal ITRs using regression-based (Q-learning) and direct-search methods (outcome weighted learning). Finally, we implement a superlearner approach to combine multiple estimated ITRs and show that the resulting ITR performs better than any of the input ITRs, mitigating uncertainty regarding user choice. Our results indicate that PDX data are a valuable resource for developing individualized treatment strategies in oncology. Supplementary materials for this article are available online.
Identifiants
pubmed: 34548714
doi: 10.1080/01621459.2020.1828091
pmc: PMC8451968
mid: NIHMS1737815
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1140-1154Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM124104
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA142538
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL149683
Pays : United States
Organisme : NIEHS NIH HHS
ID : T32 ES007018
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA199064
Pays : United States
Références
J Mach Learn Res. 2005 Jul;6:1073-1097
pubmed: 16763665
J Am Stat Assoc. 2001 Dec 1;96(456):1410-1423
pubmed: 20019887
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9546-51
pubmed: 20460310
J Clin Oncol. 2005 Mar 20;23(9):2020-7
pubmed: 15774793
Int J Biostat. 2016 May 1;12(1):305-32
pubmed: 27227726
J Clin Invest. 2011 Oct;121(10):3786-8
pubmed: 21965334
Biometrics. 2011 Dec;67(4):1422-33
pubmed: 21385164
Stat. 2012 Jan 1;1(1):103-114
pubmed: 23645940
J Natl Cancer Inst. 2000 Feb 2;92(3):205-16
pubmed: 10655437
Stat Med. 2008 Oct 15;27(23):4678-721
pubmed: 18646286
Biometrics. 2015 Dec;71(4):895-904
pubmed: 26193819
Genomics. 2000 Jul 15;67(2):164-70
pubmed: 10903841
J Am Stat Assoc. 2012 Sep 1;107(449):1106-1118
pubmed: 23630406
Lancet. 2009 May 2;373(9674):1525-31
pubmed: 19410716
Biometrika. 2013;100(3):
pubmed: 24302771
Cancer Discov. 2014 Sep;4(9):998-1013
pubmed: 25185190
Genome Biol. 2014;15(12):550
pubmed: 25516281
Biometrics. 2016 Jun;72(2):575-83
pubmed: 26575856
Nat Med. 2015 Nov;21(11):1318-25
pubmed: 26479923
Clin Cancer Res. 2016 Dec 15;22(24):6021-6030
pubmed: 27259561
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7353-60
pubmed: 27382149
J Clin Oncol. 2012 May 20;30(15):1879-87
pubmed: 22454417
Int J Biostat. 2010;6(2):Article 8
pubmed: 21969994
Nat Rev Cancer. 2014 Aug;14(8):535-46
pubmed: 25056707
J Am Stat Assoc. 2017;112(517):169-187
pubmed: 28943682
Sci Signal. 2017 Aug 08;10(491):
pubmed: 28790197
Blood. 2014 Nov 13;124(20):3110-7
pubmed: 25237203
J Biol Chem. 1981 Oct 25;256(20):10435-41
pubmed: 6116707
Nat Rev Clin Oncol. 2012 Apr 17;9(6):338-50
pubmed: 22508028
J Clin Oncol. 2009 Mar 10;27(8):1160-7
pubmed: 19204204
J Natl Compr Canc Netw. 2010 Jul;8(7):740-801
pubmed: 20679538
Stat Sci. 2014 Nov;29(4):640-661
pubmed: 25620840
Cancer Res. 2013 Sep 1;73(17):5315-9
pubmed: 23733750
Ann Stat. 2011 Apr 1;39(2):1180-1210
pubmed: 21666835
Breast Cancer Res. 2015 Feb 10;17:17
pubmed: 25849559
Biochem Pharmacol. 2014 Sep 15;91(2):135-43
pubmed: 24950467
Stat Med. 2009 Nov 20;28(26):3294-315
pubmed: 19750510
Am Soc Clin Oncol Educ Book. 2014;:e258-66
pubmed: 24857111
Biometrika. 2015;102(3):501-514
pubmed: 26893526