Impeding Virulence of Candida albicans by Candesartan and Domperidone.


Journal

Current microbiology
ISSN: 1432-0991
Titre abrégé: Curr Microbiol
Pays: United States
ID NLM: 7808448

Informations de publication

Date de publication:
Nov 2021
Historique:
received: 25 03 2021
accepted: 12 09 2021
pubmed: 23 9 2021
medline: 6 10 2021
entrez: 22 9 2021
Statut: ppublish

Résumé

Candida albicans is the most common human fungal pathogen that has developed extensive virulence factors which allows successful colonization and infection of the host. Anti-virulence agents can alleviate the pathogenesis of fungi and help the immune system to eradicate them easily. This study aimed to explore the anti-virulence effect of domperidone and candesartan against C. albicans standard strain. Sub-inhibitory concentrations (1/4 and 1/8 of minimum inhibitory concentration) of domperidone and candesartan significantly inhibited the virulence factors hemolysin, lipase, protease, phospholipase, and bioflim formation. It was found that candesartan inhibited biofilm formation by 60.48-67.91%, hemolysin activity (61.21-74.14%), phospholipase activity (40-49.67%), lipase activity (58.97-73%), and protease activity (52.63%), while domperidone was found to inhibit biofilm formation by 70.54-77.49%, hemolysin activity (64.84-69.84%), phospholipase activity (49.67-60%), lipase activity (50-54.87%), and protease activity (52.63-57.9%). Quantitative real time-PCR confirmed the anti-virulence activity of domperidone and candesartan as both drugs significantly reduce the expression of the virulence genes SAP2, SAP6, PLB1, PLB2, LIP4, LIP5. In conclusion, domperidone and candesartan could serve as anti-virulence agents for treatment of C. albicans infections.

Identifiants

pubmed: 34550434
doi: 10.1007/s00284-021-02663-x
pii: 10.1007/s00284-021-02663-x
doi:

Substances chimiques

Benzimidazoles 0
Biphenyl Compounds 0
Tetrazoles 0
Domperidone 5587267Z69
candesartan S8Q36MD2XX

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3957-3967

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Salazar F, Brown GD (2018) Antifungal innate immunity: a perspective from the last 10 years. J Innate Immun 10:373–397. https://doi.org/10.1159/000488539
doi: 10.1159/000488539 pubmed: 29768268 pmcid: 6784043
Spampinato C, Leonardi D (2013) Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int. https://doi.org/10.1155/2013/204237
doi: 10.1155/2013/204237 pubmed: 23984349 pmcid: 3741902
Mba IE, Nweze EI (2020) Mechanism of Candida pathogenesis: revisiting the vital drivers. Eur J Clin Microbiol Infect Dis 39(10):1797–1819. https://doi.org/10.1007/s10096-020-03912-w
doi: 10.1007/s10096-020-03912-w pubmed: 32372128
Lima JS, Braga KRGS, Vieira CA, Souza WWRS, Chávez-Pavoni JH, de Araújo C, Goulart LS (2018) Genotypic analysis of secreted aspartyl proteinases in vaginal Candida albicans isolates. J Bras Patol Med Lab 54(1):28–33. https://doi.org/10.5935/1676-2444.20180006
doi: 10.5935/1676-2444.20180006
Parra-Orteg B, Cruz-Torres H, Villa-Tanaca L, Hernández-Rodríguez C (2009) Phylogeny and evolution of the aspartyl protease family from clinically relevant Candida species. Mem Inst Oswaldo Cruz 104(3):505–512. https://doi.org/10.1590/S0074-02762009000300018
doi: 10.1590/S0074-02762009000300018
Gupta J, Shah H (2017) In vitro evaluation of virulence factors associated with clinical isolates of Candida species from patient in tertiary care hospital in Central India. Trop J Path Micro 3(2):188–194. https://doi.org/10.17511/jopm.2017.i02.20
doi: 10.17511/jopm.2017.i02.20
Ricetoa EBM, Menezes RP, Penatti MPA, Pedrosoc RSP (2015) Enzymatic and hemolytic activity in different Candida species. Rev Iberoam Micol 32:79–82
doi: 10.1016/j.riam.2013.11.003
Deepa K, Jeevitha T, Michael A (2015) In vitro evaluation of virulence factors of Candida species isolated from oral cavity. J Microbiol Antimicrob 7:28–32
doi: 10.5897/JMA2015.0337
de Almeida AF, Tauk-Tornisielo SM, Carmona EC (2013) Acid lipase from Candida viswanathii: production, biochemical properties, and potential application. BioMed Res Int. https://doi.org/10.1155/2013/435818
doi: 10.1155/2013/435818 pubmed: 24350270 pmcid: 3847968
Khedidja B, Abderrahman L (2011) Selection of orlistat as a potential inhibitor for lipase from Candida species. Bioinformation 7:125–129
doi: 10.6026/97320630007125
Panariello BHD, Klein MI, Pavarina AC, Duarte S (2017) Inactivation of genes TEC1 and EFG1 in Candida albicans influences extracellular matrix composition and biofilm morphology. J Oral Microbiol 9(1):1385372
doi: 10.1080/20002297.2017.1385372
Vandeputte P, Ferrari S, Coste AT (2012) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol. https://doi.org/10.1155/2012/713687
doi: 10.1155/2012/713687 pubmed: 22187560
de Oliveira Santos GC, Vasconcelos CC, Lopes A, de Sousa Cartágenes M, Filho A, Nascimento F, Ramos RM, Pires E, de Andrade MS, Rocha F, de Andrade Monteiro C (2018) Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front Microbiol 9:1351. https://doi.org/10.3389/fmicb.2018.01351
doi: 10.3389/fmicb.2018.01351 pubmed: 30018595 pmcid: 6038711
Ahmad Khan MS, Alshehrei F, Al-Ghamdi SB, Bamaga MA, Al-Thubiani AS, Alam MZ (2020) Virulence and biofilms as promising targets in developing antipathogenic drugs against candidiasis. Fut Sci 6(2):440
doi: 10.2144/fsoa-2019-0027
El-Baz AM, Mosbah RA, Goda RM, Mansour B, Sultana T, Dahms TES, El-Ganiny AM (2021) Back to nature: combating Candida albicans biofilm, phospholipase and hemolysin using plant essential oils. Antibiotics 10(1):81. https://doi.org/10.3390/antibiotics10010081
doi: 10.3390/antibiotics10010081 pubmed: 33467766 pmcid: 7830859
Siles SA, Srinivasan A, Pierce CG, Lopez-Ribot JL, Ramasubramanian AK (2013) High-throughput screening of a collection of known pharmacologically active small compounds for identification of Candida albicans biofilm inhibitors. Antimicrob Agents Chemother 57:3681–3687. https://doi.org/10.1128/AAC.00680-13
doi: 10.1128/AAC.00680-13 pubmed: 23689719 pmcid: 3719724
Younis W, AbdelKhalek A, Mayhoub AS, Seleem MN (2017) In vitro screening of an FDA-approved library against ESKAPE pathogens. Curr Pharm Des 23(14):2147–2157. https://doi.org/10.2174/1381612823666170209154745
doi: 10.2174/1381612823666170209154745 pubmed: 28190396 pmcid: 5662795
Kruszewska H, Zareba T, Tyski S (2004) Examination of antimicrobial activity of selected non-antibiotic drugs. Acta Pol Pharm 61(Suppl):18–21
pubmed: 15909927
Wang F, Zhang X, Wang J (2017) Effects of domperidone in combination with omeprazole in the treatment of chronic superficial gastritis. Pak J Med Sci 33(2):306–309. https://doi.org/10.12669/pjms.332.11778
doi: 10.12669/pjms.332.11778 pubmed: 28523027 pmcid: 5432694
CLSI (Clinical and Laboratory Standards Institute), 2018. Method for antifungal disk diffusion susceptibility testing of yeasts, 3rd ed. M44. Clinical and Laboratory Standards Institute, Wayne, PA
Nalca Y, Jänsch L, Bredenbruch F, Geffers R, Buer J, Häussler S (2006) Quorum sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrob Agents Chemother 50:1680–1688. https://doi.org/10.1128/AAC.50.5.1680-1688.2006
doi: 10.1128/AAC.50.5.1680-1688.2006 pubmed: 16641435 pmcid: 1472232
Carson CF, Mee BJ, Riley TV (2002) Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 46:1914–1920
doi: 10.1128/AAC.46.6.1914-1920.2002
Xiang H, Qiu JZ, Wang DC, Jiang YS, Xia LJ, Deng XM (2010) Influence of magnolol on the secretion of α-toxin by Staphylococcus aureus. Molecules 15:1679–1689. https://doi.org/10.3390/molecules15031679
doi: 10.3390/molecules15031679 pubmed: 20336007 pmcid: 6257330
Vijayaraghavan P, Vincent SGP (2013) A simple method for the detection of protease activity on agar plates using bromocresol green dye. J Biochem Technol 4:628–630
Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. APMIS 115:891–899
doi: 10.1111/j.1600-0463.2007.apm_630.x
Gould SWJ, Chadwick M, Cuschieri P, Easmon S, Richardson AC, Price RG, Fielder MD (2009) The evaluation of novel chromogenic substrates for the detection of lipolytic activity in clinical isolates of Staphylococcus aureus and MRSA from two European study groups. FEMS Microbiol Lett 297:10–16
doi: 10.1111/j.1574-6968.2009.01654.x
Vidotto V, Pontón J, Aoki S, Quindós G, Mantoan B, Pugliese A, Ito-Kuwa S, Nakamura K (2004) Differences in extracellular enzymatic activity between Candida dubliniensis and Candida albicans isolates. Rev Iberoam Micol 21:70–74
pubmed: 15538830
Nailis H, Kucharíková S, Řičicová M, Dijck PV, Deforce D, Nelis H, Coenye T (2010) Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiol 10:114
doi: 10.1186/1471-2180-10-114
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2
doi: 10.1006/meth.2001.1262
Kim J, Sudbery P (2011) Candida albicans, a major human fungal pathogen. J Microbiol 49:171–177
doi: 10.1007/s12275-011-1064-7
Jensen RH, Astvad KMT, Silva LV, Sanglard D, Jørgensen R, Nielsen KF, Mathiasen EG, Doroudian G, Perlin DS, Arendrup MC (2015) Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance in vivo in Candida albicans orchestrated by multiple genetic alterations. J Antimicrob Chemother 70:2551–2555. https://doi.org/10.1093/jac/dkv140
doi: 10.1093/jac/dkv140 pubmed: 26017038 pmcid: 4553713
Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4:119–128
doi: 10.4161/viru.22913
Nobile CJ, Johnson AD (2015) Candida albicans biofilms and human disease. Annu Rev Microbiol 69:71–92. https://doi.org/10.1146/annurev-micro-091014-104330
doi: 10.1146/annurev-micro-091014-104330 pubmed: 26488273 pmcid: 4930275
Silva S, Rodrigues CF, Araújo D, Rodrigues ME, Henriques M (2017) Candida species biofilms’ antifungal resistance. J Fungi 3:8
doi: 10.3390/jof3010008
Kadry AA, El-Ganiny AM, El-Baz AM (2018) Relationship between Sap prevalence and biofilm formation among resistant clinical isolates of Candida albicans. Afr Health Sci 18(4):1166–1174. https://doi.org/10.4314/ahs.v18i4.37
doi: 10.4314/ahs.v18i4.37 pubmed: 30766582 pmcid: 6354888
Miró-Canturri A, Ayerbe-Algaba R, Smani Y (2019) Drug repurposing for the treatment of bacterial and fungal infections. Front Microbiol 10:41
doi: 10.3389/fmicb.2019.00041
Guevara-Lora I, Bras G, Karkowska-Kuleta J, González-González M, Ceballos K, Sidlo W, Rapala-Kozik M (2020) Plant-derived substances in the fight against infections caused by Candida species. Int J Mol Sci 21:6131. https://doi.org/10.3390/ijms21176131
doi: 10.3390/ijms21176131 pmcid: 7504544
Ogundeji AO, Pohl CH, Sebolai OM (2016) Repurposing of aspirin and ibuprofen as candidate anti-cryptococcus drugs. Antimicrob Agents Chemother 60:4799–4808. https://doi.org/10.1128/AAC.02810-15
doi: 10.1128/AAC.02810-15 pubmed: 27246782 pmcid: 4958236
Spincemaille P, Chandhok G, Zibert A, Schmidt H, Verbeek J, Chaltin P, Cammue BP, Cassiman D, Thevissen K (2014) Angiotensin II type 1 receptor blockers increase tolerance of cells to copper and cisplatin. Microb Cell 1:352–364. https://doi.org/10.15698/mic2014.11.175
doi: 10.15698/mic2014.11.175 pubmed: 28357214 pmcid: 5349125
Abdel-Halim H, Al Dajani A, Abdelhalim A, Abdelmalek S (2019) The search of potential inhibitors of the AcrAB-TolC system of multidrug-resistant Escherichia coli: an in silico approach. Appl Microbiol Biotechnol 103:6309–6318
doi: 10.1007/s00253-019-09954-1
Zou Z, Zhou X, Wang J (2017) Antibacterial activity of ondansetron and granisetron in vitro. Int J Clin Exp Med 10:450–454
Abbas HA, Atallah H, El-Sayed MA, El-Ganiny AM (2020) Diclofenac mitigates virulence of multidrug-resistant Staphylococcus aureus. Arch Microbiol 202:2751–2760. https://doi.org/10.1007/s00203-020-01992-y
doi: 10.1007/s00203-020-01992-y pubmed: 32737541
Kulkarny VV, Chavez-Dozal A, Rane HS, Jahng M, Bernardo SM, Parra KJ, Lee SA (2014) Quinacrine inhibits Candida albicans growth and filamentation at neutral pH. Antimicrob Agents Chemother 58:7501–7509. https://doi.org/10.1128/AAC.03083-14
doi: 10.1128/AAC.03083-14 pubmed: 25288082 pmcid: 4249548
Kim K, Zilbermintz L, Martchenko M (2015) Repurposing FDA approved drugs against the human fungal pathogen Candida albicans. Ann Clin Microbiol Antimicrob 14:32. https://doi.org/10.1186/s12941-015-0090-4
doi: 10.1186/s12941-015-0090-4 pubmed: 26054754 pmcid: 4462072
Thangamani S (2016). Repurposing non-antimicrobial drugs to treat multi-drug resistant bacterial and fungal infections. Open access dissertation, Purdue University https://docs.lib.purdue.edu/open_access_dissertations/1015
Abbas HA, Elsherbini AM, Shaldam MA (2019) Glyceryl trinitrate blocks staphyloxanthin and bioflm formation in Staphylococcus aureus. Afr Health Sci 19:1376–1384. https://doi.org/10.4314/ahs.v19i1.10
doi: 10.4314/ahs.v19i1.10 pubmed: 31148964 pmcid: 6531949
Baker CA, Desrosiers K, Dolan JW (2002) Propranolol inhibits hyphal development in Candida albicans. Antimicrob Agents Chemother 46:3617–3620. https://doi.org/10.1128/aac.46.11.3617-3620.2002
doi: 10.1128/aac.46.11.3617-3620.2002 pubmed: 12384374 pmcid: 128717
Tharmalingam N, Khader R, Fuchs BB, Mylonakis E (2019) The anti-virulence efficacy of 4-(1,3-dimethyl-2,3-dihydro-1H-benzimidazol-2-yl)phenol against methicillin-resistant Staphylococcus aureus. Front Microbiol 10:1557. https://doi.org/10.3389/fmicb.2019.01557
doi: 10.3389/fmicb.2019.01557 pubmed: 31379761 pmcid: 6653400
Shinde RB, Raut JS, Chauhan NM, Karuppayil SM (2013) Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles. Braz J Infect Dis 17:395–400
doi: 10.1016/j.bjid.2012.11.002
Kong C, Chee C, Richter K, Thomas N, Abd. Rahman N, Nathan S (2018) Suppression of Staphylococcus aureus biofilm formation and virulence by a benzimidazole derivative, UM-C162. Sci Rep 8:2758. https://doi.org/10.1038/s41598-018-21141-2
doi: 10.1038/s41598-018-21141-2 pubmed: 29426873 pmcid: 5807447
Cho O, Shiokama T, Ando Y, Aoki N, Uehara C, Maeda E, Matsumoto S, Kurakado S, Sugita T (2014) Screening of compounds from an FDA-approved drug library for the ability to inhibit aspartic protease secretion from the pathogenic yeast Candida albicans. Pharmaceut Reg Affairs 3:126. https://doi.org/10.4172/2167-7689.1000126
doi: 10.4172/2167-7689.1000126
Su H, Hu C, Cao B, Qu X, Guan P, Mu Y, Han L, Huang X (2020) A semisynthetic borrelidin analogue BN-3b exerts potent antifungal activity against Candida albicans through ROS-mediated oxidative damage. Sci Rep 10:5081. https://doi.org/10.1038/s41598-020-61681-0
doi: 10.1038/s41598-020-61681-0 pubmed: 32193473 pmcid: 7081223
Li X, Yu C, Huang X, Sun S (2016) Synergistic effects and mechanisms of budesonide in combination with fluconazole against resistant Candida albicans. PLoS ONE 11:e0168936. https://doi.org/10.1371/journal.pone.0168936
doi: 10.1371/journal.pone.0168936 pubmed: 28006028 pmcid: 5179115

Auteurs

Hisham A Abbas (HA)

Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.

Amany I Gad (AI)

Department of Microbiology and Immunology, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt. amany.gad@hotmail.com.

Mona A El-Sayed (MA)

Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.

Amira M El-Ganiny (AM)

Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH