A deep neural network approach for P300 detection-based BCI using single-channel EEG scalogram images.

Brain–computer interface Continuous wavelet transform Deep neural network Electroencephalogram P300

Journal

Physical and engineering sciences in medicine
ISSN: 2662-4737
Titre abrégé: Phys Eng Sci Med
Pays: Switzerland
ID NLM: 101760671

Informations de publication

Date de publication:
Dec 2021
Historique:
received: 08 03 2021
accepted: 03 09 2021
pubmed: 23 9 2021
medline: 17 12 2021
entrez: 22 9 2021
Statut: ppublish

Résumé

Brain-computer interfaces (BCIs) acquire electroencephalogram (EEG) signals and interpret them into a command that helps people with severe motor disabilities using single channel. The goal of BCI is to achieve a prototype that supports disabled people to develop the relevant function. Various studies have been implemented in the literature to achieve a superior design using multi-channel EEG signals. This paper proposed a novel framework for the automatic P300 detection-based BCI model using a single EEG electrode. In the present study, we introduced a denoising approach using the bandpass filter technique followed by the transformation of scalogram images using continuous wavelet transform. The derived images were trained and validated using a deep neural network based on the transfer learning approach. This paper presents a BCI model based on the deep network that delivers higher performance in terms of classification accuracy and bitrate for disabled subjects using a single-channel EEG signal. The proposed P300 based BCI model has the highest average information transfer rates of 13.23 to 26.48 bits/min for disabled subjects. The classification performance has shown that the deep network based on the transfer learning approach can offer comparable performance with other state-of-the-art-method.

Identifiants

pubmed: 34550551
doi: 10.1007/s13246-021-01057-4
pii: 10.1007/s13246-021-01057-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1221-1230

Subventions

Organisme : Department of Biotechnology , Ministry of Science and Technology
ID : REF: NECBH/2019-20/177, BT/COE/34/SP28408/2018

Informations de copyright

© 2021. Australasian College of Physical Scientists and Engineers in Medicine.

Références

Hoffmann U, Vesin J, Ebrahimi T, Diserens K (2008) An efficient P300-based brain–computer interface for disabled subjects. J Neurosci Methods 167:115–25
doi: 10.1016/j.jneumeth.2007.03.005
Wolpaw JR, Birbaumer N, Mcfarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–91
doi: 10.1016/S1388-2457(02)00057-3
Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F (2018) A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng 15:1–28
Blankertz B, Dornhege G, Krauledat M, Muller K, Kunzmann V (2006) The Berlin brain–computer interface EEG-based. IEEE Trans Neural Syst Rehabil Eng 14:147–52
doi: 10.1109/TNSRE.2006.875557
Müller KR, Krauledat M, Dornhege G, Curio G, Blankertz B (2007) Machine learning and applications for brain–computer interfacing. LNCS 4557:1
Felzer T, Freisleben B (2003) Analyzing EEG signals using the probability estimating guarded neural classifier. IEEE Trans Neural Syst Rehabil Eng 11:361–71
doi: 10.1109/TNSRE.2003.819785
Savadkoohi M, Oladunni T, Thompson L (2020) A machine learning approach to epileptic seizure prediction using electroencephalogram (EEG). Signal Biocybern Biomed Eng 40:1328–41
doi: 10.1016/j.bbe.2020.07.004
Obermaier B, Guger C, Neuper C, Pfurtscheller G (2001) Hidden Markov models for online classification of single trial EEG data. Pattern Recogn Lett 22:1299–309
doi: 10.1016/S0167-8655(01)00075-7
Hiraiwa A, Shimohara K, Tokunaga Y (1990) EEG topography recognition by neural networks. IEEE Eng Med Biol Mag 9:39–42
doi: 10.1109/51.59211
Liu X, Xie Q, Lv J, Huang H, Wang W (2021) P300 event-related potential detection using one-dimensional convolutional capsule networks. Expert Syst Appl 174:114701
doi: 10.1016/j.eswa.2021.114701
Shukla PK, Chaurasiya RK, Verma S (2021) Performance improvement of P300-based home appliances control classification using convolution neural network. Biomed Signal Process Control 63:102220
doi: 10.1016/j.bspc.2020.102220
Kundu S, Ari S (2020) A deep learning architecture for P300 detection with brain–computer interface. App IRBM 41:31–8
doi: 10.1016/j.irbm.2019.08.001
Farwell L, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–23
doi: 10.1016/0013-4694(88)90149-6
Nidal K, Malik AS (eds) (2014) EEG/ERP analysis: methods and applications. CRC Press, Boca Raton
Sutton S, Braren M, Zubin J, John ER (1965) Evoked-potential correlates of stimulus uncertainty. Science 150:1187–8
doi: 10.1126/science.150.3700.1187
Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B et al (1999) A spelling device for the paralysed. Nature 398:297–8
doi: 10.1038/18581
Pfurtscheller G, Neuper C (2001) Motor imagery direct communication. Proc IEEE 89:1123–34
doi: 10.1109/5.939829
Kübler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H et al (2005) Patients with ALS can use sensorimotor rhythms to operate a brain–computer interface. Neurology 64:1775–7
doi: 10.1212/01.WNL.0000158616.43002.6D
Hill NJ, Lal TN, Schröder M, Hinterberger T, Wilhelm B et al (2006) Classifying EEG and ECoG signals without subject training for fast bci implementation: comparison of nonparalyzed and completely paralyzed subjects. IEEE Trans NeuralSyst Rehabil Eng 14:183–6
doi: 10.1109/TNSRE.2006.875548
Croft RJ, Barry RJ (2000) Removal of ocular artifact from the EEG: a review. Neurophysiol Clin 30:5–19
doi: 10.1016/S0987-7053(00)00055-1
Tang P, Wang H, Kwong S (2017) G-MS2F: GoogLeNet based multi-stage feature fusion of deep CNN for scene recognition. Neurocomputing 225:188–97
doi: 10.1016/j.neucom.2016.11.023
Gaikwad AS, El-Sharkawy M (2018) Pruning convolution neural network (squeezenet) using taylor expansion-based criterion 2018 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2018, (IEEE) . vol 1 pp 1–5
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recogn 1:770–8
Chaudhary S, Taran S, Bajaj V, Sengur A (2019) Convolutional neural network based approach towards motor imagery tasks EEG signals classification. IEEE Sens J 19:4494–500
doi: 10.1109/JSEN.2019.2899645
Cecotti H, Gräser A (2011) Convolutional neural networks for P300 detection with application to brain–computer interfaces. IEEE Trans Pattern Anal Mach Intell 33:433–45
doi: 10.1109/TPAMI.2010.125
Sellers EW, Donchin E (2006) A P300-based brain–computer interface: initial tests by ALS patients. Cl Neurophysiol. 117:538–48
doi: 10.1016/j.clinph.2005.06.027
Piccione F, Giorgi F, Tonin P, Priftis K, Giove S et al (2006) P300-based brain computer interface: reliability and performance in healthy and paralysed participants. Clin Neurophysiol 117:531–7
doi: 10.1016/j.clinph.2005.07.024

Auteurs

Sinam Ajitkumar Singh (SA)

Tripura University, Agartala, India. ajit_sinam@yahoo.com.

Takhellambam Gautam Meitei (TG)

National Chiao Tung University, Hsinchu, Taiwan.

Ningthoujam Dinita Devi (ND)

Regional Institute of Medical Sciences, Imphal, India.

Swanirbhar Majumder (S)

Tripura University, Agartala, India.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH