A comparative biomechanical study of the Distal Tibia Nail against compression plating for the osteosynthesis of supramalleolar corrective osteotomies.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
22 09 2021
22 09 2021
Historique:
received:
26
10
2020
accepted:
21
07
2021
entrez:
23
9
2021
pubmed:
24
9
2021
medline:
18
12
2021
Statut:
epublish
Résumé
The Distal Tibia Nail (DTN; Mizuho, Japan) has demonstrated higher biomechanical stiffness to locking plates in previous research for A3 distal tibia fractures. It is here investigated as a fixation option for supramalleolar corrective osteotomies (SMOT). Sixteen Sawbones tibiae were implanted with either a DTN (n = 8) or Medial Distal Tibia Plate (MDTP; n = 8) and a SMOT simulated. Two surgical outcome scenarios were envisaged: "best-case" representing an intact lateral cortex, and "worst-case" representing a fractured lateral cortex. All samples were subjected to compressive (350 N, 700 N) and torsional (± 4 Nm, ± 8 Nm) testing. Samples were evaluated using calculated construct stiffness from force-displacement data, interfragmentary movement and Von Mises' strain distribution. The DTN demonstrated a greater compressive stiffness for the best-case surgical scenario, whereas the MDTP showed higher stiffness (p < 0.05) for the worst-case surgical scenario. In torsional testing, the DTN proved more resistant to torsion in the worst-case surgical setup (p < 0.05) for both ± 4 Nm and ± 8 Nm. The equivalent stiffness of the DTN against the MDTP supports the use of this implant for SMOT fixation and should be considered as a treatment option particularly in patients presenting vascularisation problems where the MDTP is an inappropriate choice.
Identifiants
pubmed: 34552116
doi: 10.1038/s41598-021-97968-z
pii: 10.1038/s41598-021-97968-z
pmc: PMC8458440
doi:
Types de publication
Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
18834Informations de copyright
© 2021. The Author(s).
Références
Int Orthop. 2010 Dec;34(8):1285-90
pubmed: 19820935
J Mech Behav Biomed Mater. 2015 Oct;50:43-54
pubmed: 26099201
J Trauma Acute Care Surg. 2012 Feb;72(2):E81-7
pubmed: 22439240
Eur J Orthop Surg Traumatol. 2015 Jan;25(1):53-63
pubmed: 24253957
Injury. 2011 Jun;42(6):551-5
pubmed: 21489527
Ann Biomed Eng. 2010 Mar;38(3):613-20
pubmed: 20049637
Arthritis Rheum. 2004 Dec;50(12):3904-9
pubmed: 15593215
Int Orthop. 2008 Oct;32(5):697-703
pubmed: 17572892
Proc Inst Mech Eng H. 2016 Jun;230(6):561-8
pubmed: 27006420
J Biomech. 2008 Nov 14;41(15):3282-4
pubmed: 18829031
J Orthop Surg Res. 2014 May 13;9:35
pubmed: 24886667
Foot Ankle Int. 2013 Sep;34(9):1190-7
pubmed: 23897971
Clin Biomech (Bristol, Avon). 2006 Jul;21(6):646-55
pubmed: 16513229
J Am Acad Orthop Surg. 2012 Nov;20(11):675-83
pubmed: 23118133
Oper Orthop Traumatol. 2008 Sep;20(3):262-73
pubmed: 19169794
J Bone Joint Surg Am. 2011 Jul 6;93(13):1243-8
pubmed: 21776578
Clin Orthop Relat Res. 2007 Sep;462:156-68
pubmed: 17563701
Bone Miner. 1992 Dec;19(3):257-71
pubmed: 1472896
Injury. 2014 Jan;45 Suppl 1:S81-6
pubmed: 24225228
J Mech Behav Biomed Mater. 2019 Nov;99:161-168
pubmed: 31357063
Eur J Trauma Emerg Surg. 2015 Feb;41(1):25-38
pubmed: 26038163
Foot Ankle Clin. 2012 Mar;17(1):83-93
pubmed: 22284553
Arch Orthop Trauma Surg. 2018 Oct;138(10):1359-1363
pubmed: 29934820
Eur J Trauma Emerg Surg. 2013 Feb;39(1):73-7
pubmed: 26814925
Calcif Tissue Int. 1995 Nov;57(5):344-58
pubmed: 8564797
Clin Biomech (Bristol, Avon). 2016 Oct;38:42-9
pubmed: 27566982
Orthop Traumatol Surg Res. 2014 Jun;100(4):413-8
pubmed: 24721250
Clin Orthop Relat Res. 1998 Oct;(355 Suppl):S132-47
pubmed: 9917634
PLoS One. 2018 Feb 5;13(2):e0192225
pubmed: 29401510
Foot Ankle Int. 2016 Jan;37(1):102-8
pubmed: 26245203
Crit Rev Eukaryot Gene Expr. 2009;19(4):319-38
pubmed: 19817708
Int Orthop. 2014 Jun;38(6):1255-60
pubmed: 24402556
Arthritis Rheum. 2000 Mar;43(3):568-75
pubmed: 10728750