Rayleigh method adapted for the study of the optical response of natural photonic structures.
Journal
The European physical journal. E, Soft matter
ISSN: 1292-895X
Titre abrégé: Eur Phys J E Soft Matter
Pays: France
ID NLM: 101126530
Informations de publication
Date de publication:
23 Sep 2021
23 Sep 2021
Historique:
received:
18
03
2021
accepted:
07
09
2021
entrez:
23
9
2021
pubmed:
24
9
2021
medline:
15
12
2021
Statut:
epublish
Résumé
To study the electromagnetic response of natural structures that exhibit interesting optical properties, we developed a computational tool to solve the problem of electromagnetic scattering by a rough interface between two isotropic media, based on the Rayleigh method. The key aspect of the developed formalism is its capability of introducing the interface profile within the code by means of a digitalized image of the structure, which can be either obtained from an electron microscopy image or simply by design according to the complexity of the scattering surface. As application examples, we show the results obtained for surfaces taken directly from microscopy images of two different biological species. This approach constitutes a fundamental step in order to model the electromagnetic response of natural photonic structures.
Identifiants
pubmed: 34554337
doi: 10.1140/epje/s10189-021-00124-8
pii: 10.1140/epje/s10189-021-00124-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
118Subventions
Organisme : Consejo Nacional de Investigaciones Científicas y Técnicas
ID : PIP 11220170100633CO
Organisme : Secretaria de Ciencia y Tecnica, Universidad de Buenos Aires
ID : 20020150100028BA and 20020190100108BA
Informations de copyright
© 2021. The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature.
Références
A. Parker, J. Opt. A 2, R15–R28 (2000)
doi: 10.1088/1464-4258/2/6/201
M. Srinivasarao, Chem. Rev. 99, 1935–1962 (1999)
doi: 10.1021/cr970080y
P. Vukusic, J.R. Sambles, Nature 424, 852–855 (2003)
doi: 10.1038/nature01941
S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, Singapore, 2008)
doi: 10.1142/6496
S. Berthier, Iridescences, the Physical Colours of Insects (Springer, Berlin, 2007)
S.M. Doucet, M.G. Meadows, J. R. Soc. Interface 6, S115–S132 (2009)
doi: 10.1098/rsif.2008.0395.focus
J.D. Forster, H. Noh, S.F. Liew, V. Saranathan, C.F. Schreck, L. Yang, J.-G. Park, R.O. Prum, S.G.J. Mochrie, C.S. O’Hern, H. Cao, E.R. Dufresne, Adv. Mater. 22, 2939–2944 (2010)
A. Saito, Sci. Technol. Adv. Mater. 12, 064709 (2011)
doi: 10.1088/1468-6996/12/6/064709
M. Iwata, M. Teshima, T. Seki, S. Yoshioka, Y. Takeoka, Adv. Mater. 29, 1605050 (2017)
doi: 10.1002/adma.201605050
M. Xiao, Z. Hu, Z. Wang, Y. Li, A. Diaz-Tormo, N. Le-Thomas, B. Wang, N.C. Gianneschi, M.D. Shawkey, A. Dhinojwala, Sci. Adv. 3, e1701151 (2017)
doi: 10.1126/sciadv.1701151
Y. Wang, H. Cui, Q. Zhao, X. Du, Matter 1, 1–13 (2019)
doi: 10.1016/j.matt.2019.02.004
A. McDougal, B. Miller, M. Singh, M. Kolle, J. Opt. 21, 073001 (2019)
doi: 10.1088/2040-8986/aaff39
P. Vukusic, D.G. Stavenga, J. R. Soc. Interface 6, S133–S148 (2009)
L. Li, J. Opt. Soc. Am. A 10, 2581–2591 (1993)
doi: 10.1364/JOSAA.10.002581
D.C. Skigin, R.A. Depine, Opt. Commun. 149, 117–126 (1998)
doi: 10.1016/S0030-4018(97)00552-X
M.G. Moharam, T.K. Gaylord, J. Opt. Soc. Am. A 71, 811–818 (1981)
doi: 10.1364/JOSA.71.000811
J. Chandezon, M. Dupuis, G. Cornet, D. Maystre, J. Opt. Soc. Am. 72, 839–846 (1982)
doi: 10.1364/JOSA.72.000839
R.A. Depine, M.E. Inchaussandague, J. Opt. Soc. Am. A 11, 173–180 (1994)
doi: 10.1364/JOSAA.11.000173
A.A. Maradudin, T.R. Michel, A.R. McGurn, E.R. Mndez, Ann. Phys. 203, 255–307 (1990)
doi: 10.1016/0003-4916(90)90172-K
G. Schmidt, B.H. Kleemann, J. Mod. Opt. 58, 407–423 (2011)
doi: 10.1080/09500340.2010.538734
A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, London, 2005)
M. Kolle, Photonic Structures Inspired by Nature (Springer, Berlin, 2011)
doi: 10.1007/978-3-642-15169-9
M.F. Su, I. El-Kady, D.A. Bader, S. Lin, Proceedings of the 33rd International Conference on Parallel Processing (ICPP), Montreal. (2004), p. 373–379
A.E. Dolinko, D.C. Skigin, J. Opt. Soc. Am. A 30, 1746–1759 (2013)
doi: 10.1364/JOSAA.30.001746
A.E. Dolinko, D.C. Skigin, M.E. Inchaussandague, C. Carmarn, Opt. Express 20, 15139–15148 (2012)
doi: 10.1364/OE.20.015139
M.E. Inchaussandague, D.C. Skigin, A.E. Dolinko, Appl. Opt. 56, 5112–5120 (2017)
doi: 10.1364/AO.56.005112
L. Rayleigh, Proc. R. Soc. Lond. Ser. A 79, 399 (1907)
doi: 10.1098/rspa.1907.0051
L. Kazandjian, Phys. Rev. E 54, 6802 (1996)
doi: 10.1103/PhysRevE.54.6802
A.V. Tishchenko, Opt. Express 17, 17102 (2009)
doi: 10.1364/OE.17.017102
A.V. Tishchenko, Opt. Photonics News 21(7), 17102 (2010)
doi: 10.1364/OPN.21.7.000050
M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1980)
F. Toigo, A. Marvin, V. Celli, N.R. Hill, Phys. Rev. B 15(12), 5618 (1977)
doi: 10.1103/PhysRevB.15.5618
M. Lester, R.A. Depine, Opt. Commun. 127, 189 (1996)
doi: 10.1016/0030-4018(96)00067-3
V. Grnhut, R.A. Depine, Eur. J. Phys. D 62, 227 (2011)
doi: 10.1140/epjd/e2011-10438-4
V. Grnhut, R.A. Depine, Appl. Opt. 51, 3470 (2012)
doi: 10.1364/AO.51.003470
D.C. Skigin, R.A. Depine, Opt. Commun. 130, 307 (1996)
doi: 10.1016/0030-4018(96)00271-4
D.C. Skigin, R.A. Depine, J. Mod. Opt. 44, 1023 (1997)
doi: 10.1080/09500349708230714
M.E. Inchaussandague, D.C. Skigin, A. Tolivia, I. Fuertes Vila, V. Conforti, Proc. SPIE 9055, 905514 (2014)
doi: 10.1117/12.2044788
M.E. Inchaussandague, M.L. Gigli, D.C. Skigin, A. Tolivia, V. Conforti, Proc. SPIE 9429, 94290D (2015)
doi: 10.1117/12.2083848
A. Dolinko, C. Valencia, D.C. Skigin, M.E. Inchaussandague, A. Tolivia, V. Conforti, Proc. SPIE 9531, 953144 (2015)
doi: 10.1117/12.2180935
M.E. Inchaussandague, D.C. Skigin, A.E. Dolinko, Appl. Opt. 56, 5112 (2017)
doi: 10.1364/AO.56.005112