Rayleigh method adapted for the study of the optical response of natural photonic structures.


Journal

The European physical journal. E, Soft matter
ISSN: 1292-895X
Titre abrégé: Eur Phys J E Soft Matter
Pays: France
ID NLM: 101126530

Informations de publication

Date de publication:
23 Sep 2021
Historique:
received: 18 03 2021
accepted: 07 09 2021
entrez: 23 9 2021
pubmed: 24 9 2021
medline: 15 12 2021
Statut: epublish

Résumé

To study the electromagnetic response of natural structures that exhibit interesting optical properties, we developed a computational tool to solve the problem of electromagnetic scattering by a rough interface between two isotropic media, based on the Rayleigh method. The key aspect of the developed formalism is its capability of introducing the interface profile within the code by means of a digitalized image of the structure, which can be either obtained from an electron microscopy image or simply by design according to the complexity of the scattering surface. As application examples, we show the results obtained for surfaces taken directly from microscopy images of two different biological species. This approach constitutes a fundamental step in order to model the electromagnetic response of natural photonic structures.

Identifiants

pubmed: 34554337
doi: 10.1140/epje/s10189-021-00124-8
pii: 10.1140/epje/s10189-021-00124-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

118

Subventions

Organisme : Consejo Nacional de Investigaciones Científicas y Técnicas
ID : PIP 11220170100633CO
Organisme : Secretaria de Ciencia y Tecnica, Universidad de Buenos Aires
ID : 20020150100028BA and 20020190100108BA

Informations de copyright

© 2021. The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature.

Références

A. Parker, J. Opt. A 2, R15–R28 (2000)
doi: 10.1088/1464-4258/2/6/201
M. Srinivasarao, Chem. Rev. 99, 1935–1962 (1999)
doi: 10.1021/cr970080y
P. Vukusic, J.R. Sambles, Nature 424, 852–855 (2003)
doi: 10.1038/nature01941
S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, Singapore, 2008)
doi: 10.1142/6496
S. Berthier, Iridescences, the Physical Colours of Insects (Springer, Berlin, 2007)
S.M. Doucet, M.G. Meadows, J. R. Soc. Interface 6, S115–S132 (2009)
doi: 10.1098/rsif.2008.0395.focus
J.D. Forster, H. Noh, S.F. Liew, V. Saranathan, C.F. Schreck, L. Yang, J.-G. Park, R.O. Prum, S.G.J. Mochrie, C.S. O’Hern, H. Cao, E.R. Dufresne, Adv. Mater. 22, 2939–2944 (2010)
A. Saito, Sci. Technol. Adv. Mater. 12, 064709 (2011)
doi: 10.1088/1468-6996/12/6/064709
M. Iwata, M. Teshima, T. Seki, S. Yoshioka, Y. Takeoka, Adv. Mater. 29, 1605050 (2017)
doi: 10.1002/adma.201605050
M. Xiao, Z. Hu, Z. Wang, Y. Li, A. Diaz-Tormo, N. Le-Thomas, B. Wang, N.C. Gianneschi, M.D. Shawkey, A. Dhinojwala, Sci. Adv. 3, e1701151 (2017)
doi: 10.1126/sciadv.1701151
Y. Wang, H. Cui, Q. Zhao, X. Du, Matter 1, 1–13 (2019)
doi: 10.1016/j.matt.2019.02.004
A. McDougal, B. Miller, M. Singh, M. Kolle, J. Opt. 21, 073001 (2019)
doi: 10.1088/2040-8986/aaff39
P. Vukusic, D.G. Stavenga, J. R. Soc. Interface 6, S133–S148 (2009)
L. Li, J. Opt. Soc. Am. A 10, 2581–2591 (1993)
doi: 10.1364/JOSAA.10.002581
D.C. Skigin, R.A. Depine, Opt. Commun. 149, 117–126 (1998)
doi: 10.1016/S0030-4018(97)00552-X
M.G. Moharam, T.K. Gaylord, J. Opt. Soc. Am. A 71, 811–818 (1981)
doi: 10.1364/JOSA.71.000811
J. Chandezon, M. Dupuis, G. Cornet, D. Maystre, J. Opt. Soc. Am. 72, 839–846 (1982)
doi: 10.1364/JOSA.72.000839
R.A. Depine, M.E. Inchaussandague, J. Opt. Soc. Am. A 11, 173–180 (1994)
doi: 10.1364/JOSAA.11.000173
A.A. Maradudin, T.R. Michel, A.R. McGurn, E.R. Mndez, Ann. Phys. 203, 255–307 (1990)
doi: 10.1016/0003-4916(90)90172-K
G. Schmidt, B.H. Kleemann, J. Mod. Opt. 58, 407–423 (2011)
doi: 10.1080/09500340.2010.538734
A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, London, 2005)
M. Kolle, Photonic Structures Inspired by Nature (Springer, Berlin, 2011)
doi: 10.1007/978-3-642-15169-9
M.F. Su, I. El-Kady, D.A. Bader, S. Lin, Proceedings of the 33rd International Conference on Parallel Processing (ICPP), Montreal. (2004), p. 373–379
A.E. Dolinko, D.C. Skigin, J. Opt. Soc. Am. A 30, 1746–1759 (2013)
doi: 10.1364/JOSAA.30.001746
A.E. Dolinko, D.C. Skigin, M.E. Inchaussandague, C. Carmarn, Opt. Express 20, 15139–15148 (2012)
doi: 10.1364/OE.20.015139
M.E. Inchaussandague, D.C. Skigin, A.E. Dolinko, Appl. Opt. 56, 5112–5120 (2017)
doi: 10.1364/AO.56.005112
L. Rayleigh, Proc. R. Soc. Lond. Ser. A 79, 399 (1907)
doi: 10.1098/rspa.1907.0051
L. Kazandjian, Phys. Rev. E 54, 6802 (1996)
doi: 10.1103/PhysRevE.54.6802
A.V. Tishchenko, Opt. Express 17, 17102 (2009)
doi: 10.1364/OE.17.017102
A.V. Tishchenko, Opt. Photonics News 21(7), 17102 (2010)
doi: 10.1364/OPN.21.7.000050
M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1980)
F. Toigo, A. Marvin, V. Celli, N.R. Hill, Phys. Rev. B 15(12), 5618 (1977)
doi: 10.1103/PhysRevB.15.5618
M. Lester, R.A. Depine, Opt. Commun. 127, 189 (1996)
doi: 10.1016/0030-4018(96)00067-3
V. Grnhut, R.A. Depine, Eur. J. Phys. D 62, 227 (2011)
doi: 10.1140/epjd/e2011-10438-4
V. Grnhut, R.A. Depine, Appl. Opt. 51, 3470 (2012)
doi: 10.1364/AO.51.003470
D.C. Skigin, R.A. Depine, Opt. Commun. 130, 307 (1996)
doi: 10.1016/0030-4018(96)00271-4
D.C. Skigin, R.A. Depine, J. Mod. Opt. 44, 1023 (1997)
doi: 10.1080/09500349708230714
M.E. Inchaussandague, D.C. Skigin, A. Tolivia, I. Fuertes Vila, V. Conforti, Proc. SPIE 9055, 905514 (2014)
doi: 10.1117/12.2044788
M.E. Inchaussandague, M.L. Gigli, D.C. Skigin, A. Tolivia, V. Conforti, Proc. SPIE 9429, 94290D (2015)
doi: 10.1117/12.2083848
A. Dolinko, C. Valencia, D.C. Skigin, M.E. Inchaussandague, A. Tolivia, V. Conforti, Proc. SPIE 9531, 953144 (2015)
doi: 10.1117/12.2180935
M.E. Inchaussandague, D.C. Skigin, A.E. Dolinko, Appl. Opt. 56, 5112 (2017)
doi: 10.1364/AO.56.005112

Auteurs

Maria Sol Vidal (MS)

Grupo de Electromagnetismo Aplicado, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón I, C1428EHA, Buenos Aires, Argentina. msolvidal10@gmail.com.

Andrés E Dolinko (AE)

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, C1428EHA, Buenos Aires, Argentina.

Diana C Skigin (DC)

Grupo de Electromagnetismo Aplicado, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón I, C1428EHA, Buenos Aires, Argentina.
Instituto de Física de Buenos Aires, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.

Articles similaires

Humans Microscopy Animals Photons
Photons Microscopy, Fluorescence Animals Signal-To-Noise Ratio Image Processing, Computer-Assisted
Phantoms, Imaging Computed Tomography Angiography Contrast Media Coronary Angiography Humans
1.00
Neural Networks, Computer Flow Cytometry Machine Learning Photons Image Processing, Computer-Assisted

Classifications MeSH