A general principle of dendritic constancy: A neuron's size- and shape-invariant excitability.

cable theory compartmental model electrotonic analysis excitability morphological model neuronal scaling passive normalization

Journal

Neuron
ISSN: 1097-4199
Titre abrégé: Neuron
Pays: United States
ID NLM: 8809320

Informations de publication

Date de publication:
17 11 2021
Historique:
received: 05 12 2019
revised: 29 06 2021
accepted: 20 08 2021
pubmed: 24 9 2021
medline: 7 4 2022
entrez: 23 9 2021
Statut: ppublish

Résumé

Reducing neuronal size results in less membrane and therefore lower input conductance. Smaller neurons are thus more excitable, as seen in their responses to somatic current injections. However, the impact of a neuron's size and shape on its voltage responses to dendritic synaptic activation is much less understood. Here we use analytical cable theory to predict voltage responses to distributed synaptic inputs in unbranched cables, showing that these are entirely independent of dendritic length. For a given synaptic density, neuronal responses depend only on the average dendritic diameter and intrinsic conductivity. This remains valid for a wide range of morphologies irrespective of their arborization complexity. Spiking models indicate that morphology-invariant numbers of spikes approximate the percentage of active synapses. In contrast to spike rate, spike times do depend on dendrite morphology. In summary, neuronal excitability in response to distributed synaptic inputs is largely unaffected by dendrite length or complexity.

Identifiants

pubmed: 34555313
pii: S0896-6273(21)00625-5
doi: 10.1016/j.neuron.2021.08.028
pii:
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3647-3662.e7

Informations de copyright

Copyright © 2021 Elsevier Inc. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of interests The authors declare no competing interests.

Auteurs

Hermann Cuntz (H)

Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, 60528 Frankfurt am Main, Germany; Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany. Electronic address: cuntz@fias.uni-frankfurt.de.

Alex D Bird (AD)

Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, 60528 Frankfurt am Main, Germany; Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany; ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus Liebig University Giessen, 35390 Giessen, Germany.

Martin Mittag (M)

Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany; ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus Liebig University Giessen, 35390 Giessen, Germany; Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, 60590 Frankfurt am Main, Germany.

Marcel Beining (M)

Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, 60528 Frankfurt am Main, Germany; Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany; Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, 60590 Frankfurt am Main, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany.

Marius Schneider (M)

Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, 60528 Frankfurt am Main, Germany; Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany; ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus Liebig University Giessen, 35390 Giessen, Germany.

Laura Mediavilla (L)

Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, 60528 Frankfurt am Main, Germany; Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany; ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus Liebig University Giessen, 35390 Giessen, Germany.

Felix Z Hoffmann (FZ)

Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, 60528 Frankfurt am Main, Germany; Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany.

Thomas Deller (T)

Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, 60590 Frankfurt am Main, Germany.

Peter Jedlicka (P)

Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany; ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus Liebig University Giessen, 35390 Giessen, Germany; Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, 60590 Frankfurt am Main, Germany.

Articles similaires

alpha-Synuclein Humans Animals Mice Lewy Body Disease
Animals Optogenetics Visual Cortex Neurons Mice
West Nile Fever Animals West Nile virus Humans Enteric Nervous System
1.00
Animals Mice Immunity, Innate Interneurons Synapses

Classifications MeSH