Antimicrobial immunity impedes CNS vascular repair following brain injury.


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
10 2021
Historique:
received: 15 12 2020
accepted: 27 07 2021
pubmed: 25 9 2021
medline: 13 10 2021
entrez: 24 9 2021
Statut: ppublish

Résumé

Traumatic brain injury (TBI) and cerebrovascular injury are leading causes of disability and mortality worldwide. Systemic infections often accompany these disorders and can worsen outcomes. Recovery after brain injury depends on innate immunity, but the effect of infections on this process is not well understood. Here, we demonstrate that systemically introduced microorganisms and microbial products interfered with meningeal vascular repair after TBI in a type I interferon (IFN-I)-dependent manner, with sequential infections promoting chronic disrepair. Mechanistically, we discovered that MDA5-dependent detection of an arenavirus encountered after TBI disrupted pro-angiogenic myeloid cell programming via induction of IFN-I signaling. Systemic viral infection similarly blocked restorative angiogenesis in the brain parenchyma after intracranial hemorrhage, leading to chronic IFN-I signaling, blood-brain barrier leakage and a failure to restore cognitive-motor function. Our findings reveal a common immunological mechanism by which systemic infections deviate reparative programming after central nervous system injury and offer a new therapeutic target to improve recovery.

Identifiants

pubmed: 34556874
doi: 10.1038/s41590-021-01012-1
pii: 10.1038/s41590-021-01012-1
pmc: PMC8488012
mid: NIHMS1728548
doi:

Substances chimiques

Anti-Infective Agents 0
Interferon Type I 0

Types de publication

Journal Article Research Support, N.I.H., Intramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1280-1293

Subventions

Organisme : Intramural NIH HHS
ID : ZIA NS003111
Pays : United States
Organisme : Intramural NIH HHS
ID : ZIA NS003112
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2021. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.

Références

Capizzi, A., Woo, J. & Verduzco-Gutierrez, M. Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management. Med. Clin. North Am. 104, 213–238 (2020).
pubmed: 32035565 doi: 10.1016/j.mcna.2019.11.001 pmcid: 32035565
Powers, W. J. et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 50, e344–e418 (2019).
doi: 10.1161/STROKEAHA.118.022606 pubmed: 31662037 pmcid: 31662037
Schumacher, R., Muri, R. M. & Walder, B. Integrated health care management of moderate to severe TBI in older patients-A narrative review. Curr. Neurol. Neurosci. Rep. 17, 92 (2017).
pubmed: 28986740 doi: 10.1007/s11910-017-0801-7 pmcid: 28986740
Pendlebury, S. T. & Rothwell, P. M. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol. 8, 1006–1018 (2009).
pubmed: 19782001 doi: 10.1016/S1474-4422(09)70236-4 pmcid: 19782001
Nordstrom, A. & Nordstrom, P. Traumatic brain injury and the risk of dementia diagnosis: a nationwide cohort study. PLoS Med. 15, e1002496 (2018).
pubmed: 29381704 pmcid: 5790223 doi: 10.1371/journal.pmed.1002496
Vermeij, F. H. et al. Stroke-associated infection is an independent risk factor for poor outcome after acute ischemic stroke: data from the Netherlands Stroke Survey. Cerebrovasc. Dis. 27, 465–471 (2009).
pubmed: 19329851 doi: 10.1159/000210093 pmcid: 19329851
Kourbeti, I. S. et al. Infections in traumatic brain injury patients. Clin. Microbiol. Infect. 18, 359–364 (2012).
pubmed: 21851488 doi: 10.1111/j.1469-0691.2011.03625.x pmcid: 21851488
Lord, A. S. et al. Infection after intracerebral hemorrhage: risk factors and association with outcomes in the ethnic/racial variations of intracerebral hemorrhage study. Stroke 45, 3535–3542 (2014).
pubmed: 25316275 pmcid: 4245453 doi: 10.1161/STROKEAHA.114.006435
Sharma, R. et al. Infections after a traumatic brain injury: the complex interplay between the immune and neurological systems. Brain Behav. Immun. 79, 63–74 (2019).
pubmed: 31029794 doi: 10.1016/j.bbi.2019.04.034 pmcid: 31029794
Shim, R. & Wong, C. H. Y. Complex interplay of multiple biological systems that contribute to post-stroke infections. Brain Behav. Immun. 70, 10–20 (2018).
pubmed: 29571897 doi: 10.1016/j.bbi.2018.03.019 pmcid: 29571897
Ritzel, R. M. et al. Chronic alterations in systemic immune function after traumatic brain injury. J. Neurotrauma 35, 1419–1436 (2018).
pubmed: 29421977 pmcid: 5998829 doi: 10.1089/neu.2017.5399
Harrison-Felix, C., Whiteneck, G., Devivo, M. J., Hammond, F. M. & Jha, A. Causes of death following 1 year postinjury among individuals with traumatic brain injury. J. Head Trauma Rehabil. 21, 22–33 (2006).
pubmed: 16456389 doi: 10.1097/00001199-200601000-00003 pmcid: 16456389
Kesinger, M. R. et al. Hospital-acquired pneumonia is an independent predictor of poor global outcome in severe traumatic brain injury up to 5 years after discharge. J. Trauma Acute Care Surg. 78, 396–402 (2015).
pubmed: 25757128 pmcid: 5070940 doi: 10.1097/TA.0000000000000526
Andraweera, N. & Seemann, R. Acute rehospitalisation during the first 3 months of in-patient rehabilitation for traumatic brain injury. Aust. Health Rev. 40, 114–117 (2016).
pubmed: 26164449 doi: 10.1071/AH15062
Westendorp, W. F., Nederkoorn, P. J., Vermeij, J. D., Dijkgraaf, M. G. & van de Beek, D. Post-stroke infection: a systematic review and meta-analysis. BMC Neurol. 11, 110 (2011).
pubmed: 21933425 pmcid: 3185266 doi: 10.1186/1471-2377-11-110
Westendorp, W. F. et al. The preventive antibiotics in stroke study (PASS): a pragmatic randomised open-label masked endpoint clinical trial. Lancet 385, 1519–1526 (2015).
pubmed: 25612858 doi: 10.1016/S0140-6736(14)62456-9 pmcid: 25612858
Rico, R. M., Ripamonti, R., Burns, A. L., Gamelli, R. L. & DiPietro, L. A. The effect of sepsis on wound healing. J. Surg. Res. 102, 193–197 (2002).
pubmed: 11796018 doi: 10.1006/jsre.2001.6316
Koskela, M. et al. Epidermal wound healing in severe sepsis and septic shock in humans. Crit. Care 13, R100 (2009).
pubmed: 19552820 pmcid: 2717472 doi: 10.1186/cc7932
Jassam, Y. N., Izzy, S., Whalen, M., McGavern, D. B. & El Khoury, J. Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron 95, 1246–1265 (2017).
pubmed: 28910616 pmcid: 5678753 doi: 10.1016/j.neuron.2017.07.010
Shlosberg, D., Benifla, M., Kaufer, D. & Friedman, A. Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat. Rev. Neurol. 6, 393–403 (2010).
pubmed: 20551947 pmcid: 3625732 doi: 10.1038/nrneurol.2010.74
Mastorakos, P. & McGavern, D. The anatomy and immunology of vasculature in the central nervous system. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aav0492 (2019).
Russo, M. V. & McGavern, D. B. Inflammatory neuroprotection following traumatic brain injury. Science 353, 783–785 (2016).
pubmed: 27540166 pmcid: 5260471 doi: 10.1126/science.aaf6260
Vannella, K. M. & Wynn, T. A. Mechanisms of organ injury and repair by macrophages. Annu. Rev. Physiol. 79, 593–617 (2017).
pubmed: 27959618 doi: 10.1146/annurev-physiol-022516-034356 pmcid: 27959618
Shechter, R. et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38, 555–569 (2013).
pubmed: 23477737 pmcid: 4115271 doi: 10.1016/j.immuni.2013.02.012
Roth, T. L. et al. Transcranial amelioration of inflammation and cell death after brain injury. Nature 505, 223–228 (2014).
pubmed: 24317693 doi: 10.1038/nature12808 pmcid: 24317693
Russo, M. V., Latour, L. L. & McGavern, D. B. Distinct myeloid cell subsets promote meningeal remodeling and vascular repair after mild traumatic brain injury. Nat. Immunol. 19, 442–452 (2018).
pubmed: 29662169 pmcid: 6426637 doi: 10.1038/s41590-018-0086-2
Mastorakos, P. et al. Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nat. Neurosci. 24, 245–258 (2021).
pubmed: 33462481 pmcid: 7854523 doi: 10.1038/s41593-020-00773-6
Iadecola, C. & Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796–808 (2011).
pubmed: 21738161 pmcid: 3137275 doi: 10.1038/nm.2399
Ahmed, N. A. et al. Mechanisms for the diminished neutrophil exudation to secondary inflammatory sites in infected patients with a systemic inflammatory response (sepsis). Crit. Care Med. 27, 2459–2468 (1999).
pubmed: 10579265 doi: 10.1097/00003246-199911000-00023 pmcid: 10579265
Santoro, M. M. & Gaudino, G. Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp. Cell. Res. 304, 274–286 (2005).
pubmed: 15707592 doi: 10.1016/j.yexcr.2004.10.033 pmcid: 15707592
Traub, E. Persistence of lymphocytic choriomeningitis virus in immune animals and its relation to immunity. J. Exp. Med. 63, 847–861 (1936).
pubmed: 19870509 pmcid: 2133407 doi: 10.1084/jem.63.6.847
Volkert, M. & Larsen, J. H. Studies on immunological tolerance to LCM virus. 5. The induction of tolerance to the virus. Acta Pathol. Microbiol. Scand. 63, 161–171 (1965).
pubmed: 14295435 doi: 10.1111/apm.1965.63.2.161 pmcid: 14295435
Moseman, E. A., Blanchard, A. C., Nayak, D. & McGavern, D. B. T cell engagement of cross-presenting microglia protects the brain from a nasal virus infection. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abb1817 (2020).
Fensterl, V. & Sen, G. C. Interferons and viral infections. Biofactors 35, 14–20 (2009).
pubmed: 19319841 doi: 10.1002/biof.6 pmcid: 19319841
Zhou, S. et al. Induction and inhibition of type I interferon responses by distinct components of lymphocytic choriomeningitis virus. J. Virol. 84, 9452–9462 (2010).
pubmed: 20592086 pmcid: 2937596 doi: 10.1128/JVI.00155-10
Gliem, M. et al. Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann. Neurol. 71, 743–752 (2012).
pubmed: 22718543 doi: 10.1002/ana.23529
Wattananit, S. et al. Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J. Neurosci. 36, 4182–4195 (2016).
pubmed: 27076418 pmcid: 6601783 doi: 10.1523/JNEUROSCI.4317-15.2016
Fenn, A. M. et al. Immune activation promotes depression 1 month after diffuse brain injury: a role for primed microglia. Biol. Psychiatry 76, 575–584 (2014).
pubmed: 24289885 doi: 10.1016/j.biopsych.2013.10.014
Muccigrosso, M. M. et al. Cognitive deficits develop 1month after diffuse brain injury and are exaggerated by microglia-associated reactivity to peripheral immune challenge. Brain Behav. Immun. 54, 95–109 (2016).
pubmed: 26774527 pmcid: 4828283 doi: 10.1016/j.bbi.2016.01.009
Doran, S. J. et al. Early or late bacterial lung infection increases mortality after traumatic brain injury in male mice and chronically impairs monocyte innate immune function. Crit. Care Med. 48, e418–e428 (2020).
pubmed: 32149839 pmcid: 7541908 doi: 10.1097/CCM.0000000000004273
Davis, F. M. et al. Sepsis induces prolonged epigenetic modifications in bone marrow and peripheral macrophages impairing inflammation and wound healing. Arterioscler. Thromb. Vasc. Biol. 39, 2353–2366 (2019).
pubmed: 31644352 pmcid: 6818743 doi: 10.1161/ATVBAHA.119.312754
Hazeldine, J., Lord, J. M. & Belli, A. Traumatic brain injury and peripheral immune suppression: primer and prospectus. Front. Neurol. 6, 235 (2015).
pubmed: 26594196 pmcid: 4633482 doi: 10.3389/fneur.2015.00235
Angus, D. C. & Opal, S. Immunosuppression and secondary infection in sepsis: part, not all, of the story. JAMA 315, 1457–1459 (2016).
pubmed: 26975243 doi: 10.1001/jama.2016.2762 pmcid: 26975243
Sadler, A. J. & Williams, B. R. Interferon-inducible antiviral effectors. Nat. Rev. Immunol. 8, 559–568 (2008).
pubmed: 18575461 pmcid: 2522268 doi: 10.1038/nri2314
McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).
pubmed: 25614319 pmcid: 7162685 doi: 10.1038/nri3787
Amarante-Mendes, G. P. et al. Pattern-recognition receptors and the host cell death molecular machinery. Front Immunol. 9, 2379 (2018).
pubmed: 30459758 pmcid: 6232773 doi: 10.3389/fimmu.2018.02379
Abdullah, A. et al. STING-mediated type-I interferons contribute to the neuroinflammatory process and detrimental effects following traumatic brain injury. J. Neuroinflammation 15, 323 (2018).
pubmed: 30463579 pmcid: 6247615 doi: 10.1186/s12974-018-1354-7
Karve, I. P. et al. Ablation of Type-1 IFN signaling in hematopoietic cells confers protection following traumatic brain injury. eNeuro https://doi.org/10.1523/ENEURO.0128-15.2016 (2016).
Barrett, J. P. et al. Interferon-beta plays a detrimental role in experimental traumatic brain injury by enhancing neuroinflammation that drives chronic neurodegeneration. J. Neurosci. 40, 2357–2370 (2020).
pubmed: 32029532 pmcid: 7083281 doi: 10.1523/JNEUROSCI.2516-19.2020
Tsirogianni, A. K., Moutsopoulos, N. M. & Moutsopoulos, H. M. Wound healing: immunological aspects. Injury 37, S5–S12 (2006).
pubmed: 16616753 doi: 10.1016/j.injury.2006.02.035 pmcid: 16616753
Shi, C. & Pamer, E. G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11, 762–774 (2011).
pubmed: 21984070 pmcid: 3947780 doi: 10.1038/nri3070
Kenyon, A. J. Delayed wound healing in mice associated with viral alteration of macrophages. Am. J. Vet. Res. 44, 652–656 (1983).
pubmed: 6307086 pmcid: 6307086
Crane, M. J. et al. Pulmonary influenza A virus infection leads to suppression of the innate immune response to dermal injury. PLoS Pathog. 14, e1007212 (2018).
pubmed: 30138446 pmcid: 6107272 doi: 10.1371/journal.ppat.1007212
Erdur, H. et al. In-hospital stroke recurrence and stroke after transient ischemic attack: frequency and risk factors. Stroke 46, 1031–1037 (2015).
pubmed: 25737318 doi: 10.1161/STROKEAHA.114.006886 pmcid: 25737318
McColl, B. W., Rothwell, N. J. & Allan, S. M. Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J. Neurosci. 27, 4403–4412 (2007).
pubmed: 17442825 pmcid: 6672305 doi: 10.1523/JNEUROSCI.5376-06.2007
Xiong, Y., Mahmood, A. & Chopp, M. Angiogenesis, neurogenesis and brain recovery of function following injury. Curr. Opin. Investig. Drugs 11, 298–308 (2010).
pubmed: 20178043 pmcid: 2836170
Krupinski, J., Kaluza, J., Kumar, P., Kumar, S. & Wang, J. M. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25, 1794–1798 (1994).
pubmed: 7521076 doi: 10.1161/01.STR.25.9.1794
Cumming, T. B. & Brodtmann, A. Can stroke cause neurodegenerative dementia? Int. J. Stroke 6, 416–424 (2011).
pubmed: 21951407 doi: 10.1111/j.1747-4949.2011.00666.x pmcid: 21951407
Kraemer, M. et al. Delayed shrinkage of the brain after ischemic stroke: preliminary observations with voxel-guided morphometry. J. Neuroimaging 14, 265–272 (2004).
pubmed: 15228769 doi: 10.1111/j.1552-6569.2004.tb00249.x pmcid: 15228769
Nitkunan, A., Lanfranconi, S., Charlton, R. A., Barrick, T. R. & Markus, H. S. Brain atrophy and cerebral small vessel disease: a prospective follow-up study. Stroke 42, 133–138 (2011).
pubmed: 21148440 doi: 10.1161/STROKEAHA.110.594267 pmcid: 21148440
Gorelick, P. B. & Nyenhuis, D. Stroke and cognitive decline. JAMA 314, 29–30 (2015).
pubmed: 26151263 doi: 10.1001/jama.2015.7149 pmcid: 26151263
Wardlaw, J. M., Sandercock, P. A., Dennis, M. S. & Starr, J. Is breakdown of the blood–brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 34, 806–812 (2003).
pubmed: 12624314 doi: 10.1161/01.STR.0000058480.77236.B3 pmcid: 12624314
Rothenburg, L. S. et al. The relationship between inflammatory markers and post stroke cognitive impairment. J. Geriatr. Psychiatry Neurol. 23, 199–205 (2010).
pubmed: 20601647 doi: 10.1177/0891988710373598 pmcid: 20601647
Kliper, E. et al. Cognitive decline after stroke: relation to inflammatory biomarkers and hippocampal volume. Stroke 44, 1433–1435 (2013).
pubmed: 23444307 doi: 10.1161/STROKEAHA.111.000536 pmcid: 23444307
Becker, K. J., Kindrick, D. L., Lester, M. P., Shea, C. & Ye, Z. C. Sensitization to brain antigens after stroke is augmented by lipopolysaccharide. J. Cereb. Blood Flow Metab. 25, 1634–1644 (2005).
pubmed: 15931160 doi: 10.1038/sj.jcbfm.9600160 pmcid: 15931160
Clausen, B. E., Burkhardt, C., Reith, W., Renkawitz, R. & Forster, I. Conditional gene targeting in macrophages and granulocytes using LysM-cre mice. Transgenic Res. 8, 265–277 (1999).
pubmed: 10621974 doi: 10.1023/A:1008942828960 pmcid: 10621974
Prigge, J. R. et al. Type I IFNs act upon hematopoietic progenitors to protect and maintain hematopoiesis during pneumocystis lung infection in mice. J. Immunol. 195, 5347–5357 (2015).
pubmed: 26519535 doi: 10.4049/jimmunol.1501553 pmcid: 26519535
Gitlin, L. et al. Essential role of Mda5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl Acad. Sci. USA 103, 8459–8464 (2006).
pubmed: 16714379 pmcid: 1464000 doi: 10.1073/pnas.0603082103
Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).
pubmed: 10805752 pmcid: 85780 doi: 10.1128/MCB.20.11.4106-4114.2000
Saederup, N. et al. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS ONE 5, e13693 (2010).
pubmed: 21060874 pmcid: 2965160 doi: 10.1371/journal.pone.0013693
Muller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921 (1994).
pubmed: 8009221 doi: 10.1126/science.8009221 pmcid: 8009221
Manglani, M. & McGavern, D. B. Intravital imaging of neuroimmune interactions through a thinned skull. Curr. Protoc. Immunol. 120, 24.2.1–24.2.12 (2018).
doi: 10.1002/cpim.46
Oldstone, M. B., Blount, P., Southern, P. J. & Lampert, P. W. Cytoimmunotherapy for persistent virus infection reveals a unique clearance pattern from the central nervous system. Nature 321, 239–243 (1986).
pubmed: 3086743 doi: 10.1038/321239a0 pmcid: 3086743
Welsh, R. M. & Seedhom, M. O. Lymphocytic choriomeningitis virus: propagation, quantitation, and storage. Curr. Protoc. Microbiol. Chapter 15, Unit 15A 11 (2008).
Navarathna, D. H. et al. Enhanced pathogenicity of Candida albicans pre-treated with subinhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis. J. Antimicrob. Chemother. 56, 1156–1159 (2005).
pubmed: 16239285 doi: 10.1093/jac/dki383 pmcid: 16239285

Auteurs

Panagiotis Mastorakos (P)

Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
Department of Surgical Neurology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.

Matthew V Russo (MV)

Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.

Tianzan Zhou (T)

Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.

Kory Johnson (K)

National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.

Dorian B McGavern (DB)

Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA. mcgavernd@mail.nih.gov.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH