Prediction of body fat in adolescents: validity of the methods relative fat mass, body adiposity index and body fat index.


Journal

Eating and weight disorders : EWD
ISSN: 1590-1262
Titre abrégé: Eat Weight Disord
Pays: Germany
ID NLM: 9707113

Informations de publication

Date de publication:
Jun 2022
Historique:
received: 17 05 2021
accepted: 08 09 2021
pubmed: 25 9 2021
medline: 25 5 2022
entrez: 24 9 2021
Statut: ppublish

Résumé

To verify the validity of anthropometric methods body adiposity index (BAI), relative fat mass (RFM) and body fat index (BFI) to estimate body fat percentage (%BF) in adolescents. A cross-sectional study was carried out with 420 Brazilian adolescents aged 15-19 years, stratified by age (< 18 years, n = 356; ≥ 18 years, n = 64) and sex (boys, n = 216; girls, n = 204). The Anthropometric measurements height, body weight, hip circumference and waist circumference were collected to calculate the %BF by BAI, RFM, BFI methods. Subsequently, %BF was measured by dual emission X-ray absorptiometry (DXA), adopted as a reference method. In the statistical analysis of the data, the Pearson correlation test and the paired t test between %BF obtained by the equations and by the DXA were performed. The method validation criterion was that 68% of individuals should be within an acceptable error range of ± 3.5% of BF and Cohen's Kappa index ≥ 0.61. Additionally, the Bland-Altman graphical analysis was performed. All methods showed a high correlation with DXA. For the Kappa index, only the RFM reached the criterion in the total sample (0.67) and in the sample < 18 years (0.68). None of the methods reached the criterion of 68% of the sample within the error range of ± 3.5% of BF. The BAI, RFM and BFI equations were not valid for predicting BF in the studied sample according to the criteria adopted regardless of sex or age. Level V, cross-sectional descriptive study.

Identifiants

pubmed: 34558017
doi: 10.1007/s40519-021-01301-6
pii: 10.1007/s40519-021-01301-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1651-1659

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

World Health Organization (2017) Facts and figures on childhood obesity. Last accessed date May 13th, 2021. Available at: http://www.who.int/end-childhood-obesity/facts/en/
Berg AH, Scherer PE (2005) Adipose tissue, inflammation, and cardiovascular disease. Circ Res 96:939–949. https://doi.org/10.1161/01.RES.0000163635.62927.34
doi: 10.1161/01.RES.0000163635.62927.34 pubmed: 15890981
Hjartåker A, Langseth H, Weiderpass E (2008) Obesity and diabetes epidemics. Innov. Endocrinol. Cancer, Springer 72–93. https://doi.org/10.1007/978-0-387-78818-0_6
Lauby-Secretan B, Scoccianti C, Loomis D et al (2016) Body Fatness and Cancer-Viewpoint of the IARC Working Group. N Engl J Med 375:794–798. https://doi.org/10.1056/NEJMsr1606602
doi: 10.1056/NEJMsr1606602 pubmed: 27557308 pmcid: 6754861
Zheng Y, Manson JE, Yuan C et al (2017) Associations of weight gain from early to middle adulthood with major health outcomes later in life. JAMA 318:255–269. https://doi.org/10.1001/jama.2017.7092
doi: 10.1001/jama.2017.7092 pubmed: 28719691 pmcid: 5817436
Reilly JJ, Kelly J (2011) Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes 35:891–898. https://doi.org/10.1038/ijo.2010.222
doi: 10.1038/ijo.2010.222
Tomiyama AJ, Hunger JM, Nguyen-Cuu J, Wells C (2016) Misclassification of cardiometabolic health when using body mass index categories in NHANES 2005–2012. Int J Obes 40:883–886. https://doi.org/10.1038/ijo.2016.17
doi: 10.1038/ijo.2016.17
Martin AD, Drinkwater DT (1991) Variability in the measures of body fat. Assumptions or technique? Sports Med Auckl NZ 11:277–288. https://doi.org/10.2165/00007256-199111050-00001
doi: 10.2165/00007256-199111050-00001
Bergman RN, Stefanovski D, Buchanan TA et al (2011) A better index of body adiposity. Obes Silver Spring Md 19:1083–1089. https://doi.org/10.1038/oby.2011.38
doi: 10.1038/oby.2011.38
Woolcott OO, Bergman RN (2018) Relative fat mass (RFM) as a new estimator of whole-body fat percentage ─ a cross-sectional study in American adult individuals. Sci Rep 8:10980. https://doi.org/10.1038/s41598-018-29362-1
doi: 10.1038/s41598-018-29362-1 pubmed: 30030479 pmcid: 6054651
Yang HI, Cho W, Ahn KY et al (2020) A new anthropometric index to predict percent body fat in young adults. Public Health Nutr 23:1507–1514. https://doi.org/10.1017/S1368980019004191
doi: 10.1017/S1368980019004191 pubmed: 32172710
Vlassopoulos A, Combet E (2005) Lean MEJ (2014) Changing distributions of body size and adiposity with age. Int J Obes 38:857–864. https://doi.org/10.1038/ijo.2013.216
doi: 10.1038/ijo.2013.216
Cerqueira MS, Santos CAD, Silva DAS et al (2018) Validity of the Body Adiposity Index in Predicting Body Fat in Adults: a systematic review. Adv Nutr Bethesda Md 9:617–624. https://doi.org/10.1093/advances/nmy043
doi: 10.1093/advances/nmy043
Wickel EE (2014) Evaluating the utility of the body adiposity index in adolescent boys and girls. J Sci Med Sport 17:434–438. https://doi.org/10.1016/j.jsams.2013.06.002
doi: 10.1016/j.jsams.2013.06.002 pubmed: 23921073
De Santis FM, Cecon RS, de Faria ER et al (2019) Agreement of body adiposity index (BAI) and paediatric body adiposity index (BAIp) in determining body fat in Brazilian children and adolescents. Public Health Nutr 22:132–139. https://doi.org/10.1017/S1368980018002458
doi: 10.1017/S1368980018002458
de Macêdo CT, de Almeida-Neto PF, de Matos DG et al (2021) Evaluation of the body adiposity index against dual-energy X-ray absorptiometry for assessing body composition in children and adolescents. Am J Hum Biol Off J Hum Biol Counc 33:e23503. https://doi.org/10.1002/ajhb.23503
doi: 10.1002/ajhb.23503
Woolcott OO, Bergman RN (2019) Relative Fat Mass as an estimator of whole-body fat percentage among children and adolescents: a cross-sectional study using NHANES. Sci Rep 9:15279. https://doi.org/10.1038/s41598-019-51701-z
doi: 10.1038/s41598-019-51701-z pubmed: 31649287 pmcid: 6813362
de Onis M, Onyango AW, Borghi E et al (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85:660–667. https://doi.org/10.2471/blt.07.043497
doi: 10.2471/blt.07.043497 pubmed: 18026621 pmcid: 2636412
Verhaegen AA, Van Gaal LF (2021) Drugs Affecting Body Weight, Body Fat Distribution, and Metabolic Function-Mechanisms and Possible Therapeutic or Preventive Measures: an Update. Curr Obes Rep 10:1–13. https://doi.org/10.1007/s13679-020-00419-5
doi: 10.1007/s13679-020-00419-5 pubmed: 33400222
Marfell-Jones MJ, Stewart AD, De Ridder JH (2012) International standards for anthropometric assessment. http://hdl.handle.net/11072/1510
Bazzocchi A, Ponti F, Albisinni U et al (2016) DXA: technical aspects and application. Eur J Radiol 85:1481–1492. https://doi.org/10.1016/j.ejrad.2016.04.004
doi: 10.1016/j.ejrad.2016.04.004 pubmed: 27157852
George D, Mallery P (2019) IBM SPSS statistics 26 step by step: A simple guide and reference. Routledge
Watson PF, Petrie A (2010) Method agreement analysis: a review of correct methodology. Theriogenology 73:1167–1179. https://doi.org/10.1016/j.theriogenology.2010.01.003
doi: 10.1016/j.theriogenology.2010.01.003 pubmed: 20138353
Cohen J (1960) A Coefficient of Agreement for Nominal Scales. Educ Psychol Measur 20:37–46. https://doi.org/10.1177/001316446002000104
doi: 10.1177/001316446002000104
Lohman TG (1987) The use of skinfold to estimate body fatness on children and youth. J Phys Educ Recreat Dance 58:98–103. https://doi.org/10.1080/07303084.1987.10604383
doi: 10.1080/07303084.1987.10604383
Bottaro MF, Heyward VH, Bezerra RF, Wagner DR (2002) Skinfold method vs dual-energy x-ray absorptiometry to assess body composition in normal and obese women. J Exerc Physiol Online 5:11–18
Doran DA, Mc Geever S, Collins KD et al (2014) The validity of commonly used adipose tissue body composition equations relative to dual energy X-ray absorptiometry (DXA) in gaelic games players. Int J Sports Med 35:95–100. https://doi.org/10.1055/s-0033-1333693
doi: 10.1055/s-0033-1333693 pubmed: 23900901
Krouwer JS (2008) Why Bland-Altman plots should use X, not (Y+X)/2 when X is a reference method. Stat Med 27:778–780. https://doi.org/10.1002/sim.3086
doi: 10.1002/sim.3086 pubmed: 17907247
Ripka WL, Orsso CE, Haqq AM et al (2020) Validity and accuracy of body fat prediction equations using anthropometrics measurements in adolescents. Eat Weight Disord EWD 26:879–886. https://doi.org/10.1007/s40519-020-00918-3
doi: 10.1007/s40519-020-00918-3 pubmed: 32430885
Flegal KM, Graubard B (2005) Ioannidis JPA (2020) Use and reporting of Bland-Altman analyses in studies of self-reported versus measured weight and height. Int J Obes 44:1311–1318. https://doi.org/10.1038/s41366-019-0499-5
doi: 10.1038/s41366-019-0499-5
Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet Lond Engl 1:307–310. https://doi.org/10.1016/S0140-6736(86)90837-8
doi: 10.1016/S0140-6736(86)90837-8
Johnson W, Chumlea WC, Czerwinski SA, Demerath EW (2012) Concordance of the recently published body adiposity index with measured body fat percent in European-American adults. Obes Silver Spring Md 20:900–903. https://doi.org/10.1038/oby.2011.346
doi: 10.1038/oby.2011.346
Segheto W, Coelho FA, Guimarães C, da Silva D et al (2017) Validity of body adiposity index in predicting body fat in Brazilians adults. Am J Hum Biol Off J Hum Biol Counc. https://doi.org/10.1002/ajhb.22901
doi: 10.1002/ajhb.22901
Jager J, Putnick DL, Bornstein MH (2017) II. More than just convenient: the scientific merits of homogeneous convenience samples. Monogr Soc Res Child Dev 82:13–30. https://doi.org/10.1111/mono.12296
doi: 10.1111/mono.12296 pubmed: 28475254 pmcid: 5606225
Silva AM, Fields DA, Sardinha LB (2013) A PRISMA-driven systematic review of predictive equations for assessing fat and fat-free mass in healthy children and adolescents using multicomponent molecular models as the reference method. J Obes 2013:148696. https://doi.org/10.1155/2013/148696
doi: 10.1155/2013/148696 pubmed: 23844282 pmcid: 3703366
Messina C, Albano D, Gitto S, et al (2020) Body composition with dual energy X-ray absorptiometry: from basics to new tools. Quant Imaging Med Surg 10:1687–1698. https://doi.org/10.21037/qims.2020.03.02

Auteurs

Irismar G A Encarnação (IGA)

School of Education, Campus Santa Apolónia, Polytechnic Institute of Bragança, Bragança, Portugal. irismarcapoeiraefi@gmail.com.
School of Education, Campus Santa Apolónia, Polytechnic Institute of Bragança, Bragança, Portugal. irismarcapoeiraefi@gmail.com.

Matheus S Cerqueira (MS)

Campus Rio Pomba, Federal Institute Southeast of Minas Gerais, Rio Pomba, Minas Gerais, Brazil.
Department of Physical Education, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.

Diego A S Silva (DAS)

Postgraduate Program in Physical Education, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.

João C B Marins (JCB)

Department of Physical Education, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.

Pedro M Magalhães (PM)

School of Education, Campus Santa Apolónia, Polytechnic Institute of Bragança, Bragança, Portugal.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH