Diagnostic interest of whole-body MRI in early- and late-onset LAMA2 muscular dystrophies: a large international cohort.


Journal

Journal of neurology
ISSN: 1432-1459
Titre abrégé: J Neurol
Pays: Germany
ID NLM: 0423161

Informations de publication

Date de publication:
May 2022
Historique:
received: 02 06 2021
accepted: 13 09 2021
revised: 12 09 2021
pubmed: 25 9 2021
medline: 23 4 2022
entrez: 24 9 2021
Statut: ppublish

Résumé

LAMA2-related muscular dystrophy (LAMA2-RD) encompasses a group of recessive muscular dystrophies caused by mutations in the LAMA2 gene, which codes for the alpha-2 chain of laminin-211 (merosin). Diagnosis is straightforward in the classic congenital presentation with no ambulation and complete merosin deficiency in muscle biopsy, but is far more difficult in milder ambulant individuals with partial merosin deficiency. To investigate the diagnostic utility of muscle imaging in LAMA2-RD using whole-body magnetic resonance imaging (WBMRI). 27 patients (2-62 years, 21-80% with acquisition of walking ability and 6 never ambulant) were included in an international collaborative study. All carried two pathogenic mutations, mostly private missense changes. An intronic variant (c.909 + 7A > G) was identified in all the Chilean cases. Three patients (two ambulant) showed intellectual disability, epilepsy, and brain structural abnormalities. WBMRI T1w sequences or T2 fat-saturated images (Dixon) revealed abnormal muscle fat replacement predominantly in subscapularis, lumbar paraspinals, gluteus minimus and medius, posterior thigh (adductor magnus, biceps femoris, hamstrings) and soleus. This involvement pattern was consistent for both ambulant and non-ambulant patients. The degree of replacement was predominantly correlated to the disease duration, rather than to the onset or the clinical severity. A "COL6-like sandwich sign" was observed in several muscles in ambulant adults, but different involvement of subscapularis, gluteus minimus, and medius changes allowed distinguishing LAMA2-RD from collagenopathies. The thigh muscles seem to be the best ones to assess disease progression. WBMRI in LAMA2-RD shows a homogeneous pattern of brain and muscle imaging, representing a supportive diagnostic tool.

Sections du résumé

BACKGROUND BACKGROUND
LAMA2-related muscular dystrophy (LAMA2-RD) encompasses a group of recessive muscular dystrophies caused by mutations in the LAMA2 gene, which codes for the alpha-2 chain of laminin-211 (merosin). Diagnosis is straightforward in the classic congenital presentation with no ambulation and complete merosin deficiency in muscle biopsy, but is far more difficult in milder ambulant individuals with partial merosin deficiency.
OBJECTIVE OBJECTIVE
To investigate the diagnostic utility of muscle imaging in LAMA2-RD using whole-body magnetic resonance imaging (WBMRI).
RESULTS RESULTS
27 patients (2-62 years, 21-80% with acquisition of walking ability and 6 never ambulant) were included in an international collaborative study. All carried two pathogenic mutations, mostly private missense changes. An intronic variant (c.909 + 7A > G) was identified in all the Chilean cases. Three patients (two ambulant) showed intellectual disability, epilepsy, and brain structural abnormalities. WBMRI T1w sequences or T2 fat-saturated images (Dixon) revealed abnormal muscle fat replacement predominantly in subscapularis, lumbar paraspinals, gluteus minimus and medius, posterior thigh (adductor magnus, biceps femoris, hamstrings) and soleus. This involvement pattern was consistent for both ambulant and non-ambulant patients. The degree of replacement was predominantly correlated to the disease duration, rather than to the onset or the clinical severity. A "COL6-like sandwich sign" was observed in several muscles in ambulant adults, but different involvement of subscapularis, gluteus minimus, and medius changes allowed distinguishing LAMA2-RD from collagenopathies. The thigh muscles seem to be the best ones to assess disease progression.
CONCLUSION CONCLUSIONS
WBMRI in LAMA2-RD shows a homogeneous pattern of brain and muscle imaging, representing a supportive diagnostic tool.

Identifiants

pubmed: 34559299
doi: 10.1007/s00415-021-10806-0
pii: 10.1007/s00415-021-10806-0
doi:

Substances chimiques

Laminin 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2414-2429

Subventions

Organisme : European Cooperation in Science and Technology
ID : BM1304

Informations de copyright

© 2021. Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Allamand V, Guicheney P (2002) Merosin-deficient congenital muscular dystrophy, autosomal recessive (MDC1A, MIM#156225, LAMA2 gene coding for alpha2 chain of laminin). Eur J Hum Genet EJHG 10(2):91–94: https://doi.org/10.1038/sj.ejhg.5200743
Geranmayeh F, Clement E, Feng LH et al (2010) Genotype-phenotype correlation in a large population of muscular dystrophy patients with LAMA2 mutations. Neuromuscul Disord NMD 20(4):241–250. https://doi.org/10.1016/j.nmd.2010.02.001
doi: 10.1016/j.nmd.2010.02.001
Lokken N, Born AP, Duno M et al (2015) LAMA2-related myopathy: Frequency among congenital and limb-girdle muscular dystrophies. Muscle Nerve 52(4):547–553. https://doi.org/10.1002/mus.24588
doi: 10.1002/mus.24588
Gavassini BF, Carboni N, Nielsen JE et al (2011) Clinical and molecular characterization of limb-girdle muscular dystrophy due to LAMA2 mutations. Muscle Nerve 44(5):703–709. https://doi.org/10.1002/mus.22132
doi: 10.1002/mus.22132
Marques J, Duarte ST, Costa S et al (2014) Atypical phenotype in two patients with LAMA2 mutations. Neuromuscul Disord NMD 24(5):419–424. https://doi.org/10.1016/j.nmd.2014.01.004
doi: 10.1016/j.nmd.2014.01.004
Sewry CA, D’Alessandro M, Wilson LA et al (1997) Expression of laminin chains in skin in merosin-deficient congenital muscular dystrophy. Neuropediatrics 28(4):217–222. https://doi.org/10.1055/s-2007-973703
doi: 10.1055/s-2007-973703
Oliveira J, Gruber A, Cardoso M et al (2018) LAMA2 gene mutation update: Toward a more comprehensive picture of the laminin-alpha2 variome and its related phenotypes. Hum Mut 39(10):1314–1337. https://doi.org/10.1002/humu.23599
doi: 10.1002/humu.23599
Quijano-Roy S, Avila-Smirnow D, Carlier RY et al (2012) Whole body muscle MRI protocol: pattern recognition in early onset NM disorders. Neuromuscul Disord NMD 22(Suppl 2):S68–S84. https://doi.org/10.1016/j.nmd.2012.08.003
doi: 10.1016/j.nmd.2012.08.003
Warman Chardon J, Diaz-Manera J, Tasca G et al (2019) MYO-MRI diagnostic protocols in genetic myopathies. Neuromuscul Disord NMD 29(11):827–841. https://doi.org/10.1016/j.nmd.2019.08.011
doi: 10.1016/j.nmd.2019.08.011
Tordjman M, Dabaj I, Laforet P et al (2018) Muscular MRI-based algorithm to differentiate inherited myopathies presenting with spinal rigidity. Eur Radiol 28(12):5293–5303. https://doi.org/10.1007/s00330-018-5472-5
doi: 10.1007/s00330-018-5472-5
Harris E, McEntagart M, Topf A et al (2017) Clinical and neuroimaging findings in two brothers with limb girdle muscular dystrophy due to LAMA2 mutations. Neuromuscul Disord NMD 27(2):170–174. https://doi.org/10.1016/j.nmd.2016.10.009
doi: 10.1016/j.nmd.2016.10.009
Nelson I, Stojkovic T, Allamand V et al (2015) Laminin alpha2 Deficiency-related muscular dystrophy mimicking Emery-Dreifuss and collagen VI related diseases. J Neuromuscul Dis 2(3):229–240. https://doi.org/10.3233/JND-150093
doi: 10.3233/JND-150093
Mercuri E, Muntoni F (2012) The ever-expanding spectrum of congenital muscular dystrophies. Ann Neurol 72(1):9–17. https://doi.org/10.1002/ana.23548
doi: 10.1002/ana.23548
Qiao C, Dai Y, Nikolova VD et al (2018) Amelioration of Muscle and Nerve Pathology in LAMA2 Muscular Dystrophy by AAV9-Mini-Agrin. Molecul Therapy Methods Clin Develop 9:47–56. https://doi.org/10.1016/j.omtm.2018.01.005
doi: 10.1016/j.omtm.2018.01.005
Gawlik KI, Durbeej M (2020) A Family of Laminin alpha2 Chain-Deficient Mouse Mutants: Advancing the Research on LAMA2-CMD. Front Molecul Neurosci 13:59. https://doi.org/10.3389/fnmol.2020.00059
doi: 10.3389/fnmol.2020.00059
Sarkozy A, Foley AR, Zambon AA et al (2020) LAMA2-related dystrophies: clinical phenotypes, disease biomarkers, and clinical trial readiness. Front Molecul Neurosci 13:123. https://doi.org/10.3389/fnmol.2020.00123
doi: 10.3389/fnmol.2020.00123
Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30
doi: 10.1038/gim.2015.30
Carlier RY, Laforet P, Wary C et al (2011) Whole-body muscle MRI in 20 patients suffering from late onset Pompe disease: Involvement patterns. Neuromuscul Disord NMD 21(11):791–799. https://doi.org/10.1016/j.nmd.2011.06.748
doi: 10.1016/j.nmd.2011.06.748
Quijano-Roy S, Carlier RY (2019) Neuroimaging in Non-dystrophic Myopathies. In: Barkhof F, Jager R, Thurnher M et al (eds) Clinical Neuroradiology: The ESNR Textbook. Springer International Publishing, Cham, pp 1–40
Lamminen AE (1990) Magnetic resonance imaging of primary skeletal muscle diseases: patterns of distribution and severity of involvement. British J Radiol 63(756):946–950. https://doi.org/10.1259/0007-1285-63-756-946
doi: 10.1259/0007-1285-63-756-946
Hankiewicz K, Carlier RY, Lazaro L et al (2015) Whole-body muscle magnetic resonance imaging in SEPN1-related myopathy shows a homogeneous and recognizable pattern. Muscle Nerve 52(5):728–735. https://doi.org/10.1002/mus.24634
doi: 10.1002/mus.24634
Ge L, Liu A, Gao K et al (2018) Deletion of exon 4 in LAMA2 is the most frequent mutation in Chinese patients with laminin alpha2-related muscular dystrophy. Scient Rep 8(1):14989. https://doi.org/10.1038/s41598-018-33098-3
doi: 10.1038/s41598-018-33098-3
Dello Russo C, Di Giacomo G, Mesoraca A et al (2014) Next generation sequencing in the identification of a rare genetic disease from preconceptional couple screening to preimplantation genetic diagnosis. J Prenatal Med 8(1–2):17–24
Savarese M, Di Fruscio G, Mutarelli M et al (2014) MotorPlex provides accurate variant detection across large muscle genes both in single myopathic patients and in pools of DNA samples. Acta Neuropathologica Communic 2:100. https://doi.org/10.1186/s40478-014-0100-3
doi: 10.1186/s40478-014-0100-3
Stehlikova K, Skalova D, Zidkova J et al (2017) Muscular dystrophies and myopathies: the spectrum of mutated genes in the Czech Republic. Clin Genet 91(3):463–469. https://doi.org/10.1111/cge.12839
doi: 10.1111/cge.12839
Zenagui R, Lacourt D, Pegeot H et al (2018) A reliable targeted next-generation sequencing strategy for diagnosis of myopathies and muscular dystrophies, especially for the giant titin and nebulin genes. J Molecul Diagnost JMD 20(4):533–549. https://doi.org/10.1016/j.jmoldx.2018.04.001
doi: 10.1016/j.jmoldx.2018.04.001
Gomez-Andres D, Diaz J, Munell F et al (2019) Disease duration and disability in dysfeRlinopathy can be described by muscle imaging using heatmaps and random forests. Muscle Nerve 59(4):436–444. https://doi.org/10.1002/mus.26403
doi: 10.1002/mus.26403
Gomez-Andres D, Dabaj I, Mompoint D et al (2016) Pediatric laminopathies: Whole-body magnetic resonance imaging fingerprint and comparison with Sepn1 myopathy. Muscle Nerve 54(2):192–202. https://doi.org/10.1002/mus.25018
doi: 10.1002/mus.25018
Mercuri E, Lampe A, Allsop J et al (2005) Muscle MRI in Ullrich congenital muscular dystrophy and Bethlem myopathy. Neuromuscul Disord NMD 15(4):303–330. https://doi.org/10.1016/j.nmd.2005.01.004
doi: 10.1016/j.nmd.2005.01.004
Tasca G, Monforte M, Diaz-Manera J et al (2018) MRI in sarcoglycanopathies: a large international cohort study. J Neurol Neurosurg Psychiatry 89(1):72–77. https://doi.org/10.1136/jnnp-2017-316736
doi: 10.1136/jnnp-2017-316736
Sewry CA, Naom I, D’Alessandro M et al (1997) Variable clinical phenotype in merosin-deficient congenital muscular dystrophy associated with differential immunolabelling of two fragments of the laminin alpha 2 chain. Neuromuscul Disord NMD 7(3):169–175. https://doi.org/10.1016/s0960-8966(97)00425-2
doi: 10.1016/s0960-8966(97)00425-2
Oliveira J, Goncalves A, Oliveira ME et al (2014) Reviewing large LAMA2 deletions and duplications in congenital muscular dystrophy patients. J Neuromuscul Dis 1(2):169–179
doi: 10.3233/JND-140031
Bonnemann CG, Wang CH, Quijano-Roy S et al (2014) Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord NMD 24(4):289–311. https://doi.org/10.1016/j.nmd.2013.12.011
doi: 10.1016/j.nmd.2013.12.011
Leite CC, Lucato LT, Martin MGM et al (2005) Merosin-deficient congenital muscular dystrophy (CMD): a study of 25 Brazilian patients using MRI. Pediatr Radiol 35(6):572–579. https://doi.org/10.10007/s00247-004-1398-y
doi: 10.10007/s00247-004-1398-y
Diaz-Manera J, Alejaldre A, Gonzalez L et al (2016) Muscle imaging in muscle dystrophies produced by mutations in the EMD and LMNA genes. Neuromuscul Disord NMD 26(1):33–40. https://doi.org/10.1016/j.nmd.2015.10.001
doi: 10.1016/j.nmd.2015.10.001
Brockington M, Yuva Y, Prandini P et al (2001) Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet 10(25):2851–2859. https://doi.org/10.1093/hmg/10.25
doi: 10.1093/hmg/10.25
Barp A, Bello L, Caumo L et al (2017) Muscle MRI and functional outcome measures in Becker muscular dystrophy. Scient Rep 7(1):16060. https://doi.org/10.1038/s41598-017-16170-2
doi: 10.1038/s41598-017-16170-2
Barp A, Laforet P, Bello L et al (2020) European muscle MRI study in limb girdle muscular dystrophy type R1/2A (LGMDR1/LGMD2A). J Neurol 267(1):45–56. https://doi.org/10.1007/s00415-019-09539-y
doi: 10.1007/s00415-019-09539-y
Sakr HM, Fahmy N, Elsayed NS et al (2021) Whole-body muscle MRI characteristics of LAMA2-related congenital muscular dystrophy children: An emerging pattern. Neuromuscul Disord. https://doi.org/10.1016/j.nmd.2021.06.012
doi: 10.1016/j.nmd.2021.06.012
Gillies AR, Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44(3):318–331. https://doi.org/10.1002/mus.22094
doi: 10.1002/mus.22094
Yurchenco PD, McKee KK, Reinhard JR, et al. Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies. Matrix Biol 2018;71–72:174–187 https://doi.org/10.1016/j.matbio.2017.11.009

Auteurs

Susana Quijano-Roy (S)

APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France.
Université de Versailles, U1179 INSERM-UVSQ, Versailles, France.

Jana Haberlova (J)

Department of Paediatric Neurology, Motol University Hospital, Prague, Czech Republic.

Claudia Castiglioni (C)

Pediatric Neurology Department, Clinica Las Condes, Santiago de Chile, Chile.
Instituto Nacional de Rehabilitación Pedro Aguirre Cerda, Santiago de Chile, Chile.

John Vissing (J)

Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.

Francina Munell (F)

Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain, Passeig de la Vall d'Hebron 119-129, 08035.

François Rivier (F)

Department of Pediatric Neurology and Reference Center for Neuromuscular Diseases AOC, CHU Montpellier, Montpellier, France.
PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.

Tanya Stojkovic (T)

APHP, Neuromuscular Reference Center, Pitié-Salpêtrière Hospital, Institute of Myology, Paris, France.

Edoardo Malfatti (E)

Univ Paris Est UPE, INSERM, U955 IMRB, APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Hôpital Henri Mondor, Créteil, France.

Marta Gómez García de la Banda (M)

APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France.

Giorgio Tasca (G)

Unità Operativa Complessa Di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia.

Laura Costa Comellas (L)

Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain, Passeig de la Vall d'Hebron 119-129, 08035.

Audrey Benezit (A)

APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France.

Helge Amthor (H)

APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France.
Université de Versailles, U1179 INSERM-UVSQ, Versailles, France.

Ivana Dabaj (I)

APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France.
CHU de Rouen, Service de Néonatologie, Réanimation pédiatrique, Neuropédiatrie et Éducation Fonctionnelle de L'enfant, INSERM U 1245, ED497, 76000, Rouen, France.

Clara Gontijo Camelo (C)

Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil.

Pascal Laforêt (P)

Nord/Est/Ile de France Neuromuscular Reference Center, PHENIX FHU, Hôpital Raymond-Poincaré, AP-HP. INSERM U1179, Garches, France.

John Rendu (J)

Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, GIN, Grenoble, France.

Norma B Romero (NB)

Sorbonne Université, Myology Institute, Neuromuscular Morphology Unit, Center for Research in Myology, GH Pitié-Salpêtrière, Paris, France.
Centre de Référence de Pathologie Neuromusculaire Paris-Est, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.

Eliana Cavassa (E)

APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France.

Fabiana Fattori (F)

Unit for Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, Rome, Italy.

Christophe Beroud (C)

APHM, Laboratoire de Génétique Moléculaire, Hôpital TIMONE Enfants; Aix Marseille University, INSERM, MMG, Marseille, France.

Jana Zídková (J)

Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic.

Nicolas Leboucq (N)

Radiology Department, CHU Montpellier, Montpellier, France.

Nicoline Løkken (N)

Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.

Ángel Sanchez-Montañez (Á)

Pediatric Neuroradiology, Radiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.

Ximena Ortega (X)

Diagnostic Imaging Service, Clinica Las Condes, Santiago de Chile, Chile.

Martin Kynčl (M)

Department of Radiology, Motol University Hospital, Prague, Czech Republic.

Corinne Metay (C)

AP-HP, UF Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Centre de Génétique Moléculaire et Chromosomique, GH Pitié Salpêtrière, Paris, France.
Sorbonne Université - Inserm UMRS974, Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Paris, France.

David Gómez-Andrés (D)

Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain, Passeig de la Vall d'Hebron 119-129, 08035. david_gomez@vhebron.net.

Robert Y Carlier (RY)

APHP, GH Université Paris-Saclay, DMU Smart Imaging, Medical Imaging Department, Raymond Poincaré Teaching Hospital, Garches, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH