Myricetin slows liquid-liquid phase separation of Tau and activates ATG5-dependent autophagy to suppress Tau toxicity.


Journal

The Journal of biological chemistry
ISSN: 1083-351X
Titre abrégé: J Biol Chem
Pays: United States
ID NLM: 2985121R

Informations de publication

Date de publication:
10 2021
Historique:
received: 07 05 2021
revised: 16 09 2021
accepted: 20 09 2021
pubmed: 25 9 2021
medline: 24 11 2021
entrez: 24 9 2021
Statut: ppublish

Résumé

Intraneuronal neurofibrillary tangles composed of Tau aggregates have been widely accepted as an important pathological hallmark of Alzheimer's disease. A current therapeutic avenue for treating Alzheimer's disease is aimed at inhibiting Tau accumulation with small molecules such as natural flavonoids. Liquid-liquid phase separation (LLPS) of Tau can lead to its aggregation, and Tau aggregates can then be degraded by autophagy. However, it is unclear whether natural flavonoids modulate the formation of phase-separated Tau droplets or promote autophagy and Tau clearance. Here, using confocal microscopy and fluorescence recovery after photobleaching assays, we report that a natural antioxidant flavonoid compound myricetin slows LLPS of full-length human Tau, shifting the equilibrium phase boundary to a higher protein concentration. This natural flavonoid also significantly inhibits pathological phosphorylation and abnormal aggregation of Tau in neuronal cells and blocks mitochondrial damage and apoptosis induced by Tau aggregation. Importantly, using coimmunoprecipitation and Western blotting, we show that treatment of cells with myricetin stabilizes the interaction between Tau and autophagy-related protein 5 (ATG5) to promote clearance of phosphorylated Tau to indirectly limit its aggregation. Consistently, this natural flavonoid inhibits mTOR pathway, activates ATG5-dependent Tau autophagy, and almost completely suppresses Tau toxicity in neuronal cells. Collectively, these results demonstrate how LLPS and abnormal aggregation of Tau are inhibited by natural flavonoids, bridging the gap between Tau LLPS and aggregation in neuronal cells, and also establish that myricetin could act as an ATG5-dependent autophagic activator to ameliorate the pathogenesis of Alzheimer's disease.

Identifiants

pubmed: 34560101
pii: S0021-9258(21)01025-5
doi: 10.1016/j.jbc.2021.101222
pmc: PMC8551527
pii:
doi:

Substances chimiques

ATG5 protein, human 0
Autophagy-Related Protein 5 0
Flavonoids 0
MAPT protein, human 0
Protein Aggregates 0
tau Proteins 0
myricetin 76XC01FTOJ

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

101222

Informations de copyright

Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

Déclaration de conflit d'intérêts

Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article.

Références

Cell. 2018 Apr 19;173(3):677-692.e20
pubmed: 29677512
Acta Neuropathol. 2017 May;133(5):665-704
pubmed: 28386764
Nature. 2017 Jul 13;547(7662):185-190
pubmed: 28678775
J Alzheimers Dis. 2013;35(2):319-34
pubmed: 23435411
J Med Chem. 2013 Jun 13;56(11):4135-55
pubmed: 23484434
Biochim Biophys Acta Mol Basis Dis. 2017 Feb;1863(2):414-427
pubmed: 27890528
Cell. 2019 Jan 24;176(3):419-434
pubmed: 30682370
J Biol Chem. 2004 Jun 25;279(26):26846-57
pubmed: 15096521
Mol Neurobiol. 2016 Aug;53(6):3565-3575
pubmed: 26099310
Nature. 2021 Mar;591(7848):142-146
pubmed: 33473217
Nat Rev Neurol. 2019 May;15(5):272-286
pubmed: 30890779
J Biol Chem. 2020 May 1;295(18):5850-5856
pubmed: 32229582
PLoS Biol. 2011 Jun;9(6):e1001080
pubmed: 21695112
J Biol Chem. 2010 Feb 5;285(6):3592-3599
pubmed: 19959468
EMBO J. 2018 Apr 3;37(7):
pubmed: 29472250
Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006247
pubmed: 22762014
EMBO J. 2017 Jul 3;36(13):1811-1836
pubmed: 28596378
Nat Commun. 2020 Jun 4;11(1):2809
pubmed: 32499559
Cell. 2011 Nov 11;147(4):728-41
pubmed: 22078875
J Mol Biol. 2020 Mar 27;432(7):2141-2163
pubmed: 32087196
PLoS Biol. 2017 Jul 6;15(7):e2002183
pubmed: 28683104
Trends Neurosci. 2017 Mar;40(3):151-166
pubmed: 28190529
Brain. 2016 May;139(Pt 5):1568-86
pubmed: 27020329
Nat Commun. 2020 Nov 4;11(1):5574
pubmed: 33149109
Arch Toxicol. 2019 Sep;93(9):2491-2513
pubmed: 31440798
Annu Rev Biophys. 2015;44:101-22
pubmed: 25747593
Nat Rev Mol Cell Biol. 2009 Jul;10(7):458-67
pubmed: 19491929
Nat Rev Neurosci. 2016 Jan;17(1):5-21
pubmed: 26631930
Cell. 2010 Feb 5;140(3):313-26
pubmed: 20144757
Cell Death Dis. 2014 Nov 06;5:e1509
pubmed: 25375374
Hum Mol Genet. 2006 Feb 1;15(3):433-42
pubmed: 16368705
Trends Cell Biol. 2019 Jun;29(6):452-461
pubmed: 30929793
Science. 2020 Oct 2;370(6512):56-60
pubmed: 33004511
Cell. 2018 Apr 19;173(3):720-734.e15
pubmed: 29677515
Nat Neurosci. 2018 Jan;21(1):72-80
pubmed: 29273772
Acta Neuropathol. 2021 May;141(5):697-708
pubmed: 33723967
Nat Commun. 2019 Jul 2;10(1):2909
pubmed: 31266957
Science. 2018 Jun 15;360(6394):1242-1246
pubmed: 29748322
Nutrients. 2016 Feb 16;8(2):90
pubmed: 26891321
Cell Death Differ. 2019 Aug;26(8):1411-1427
pubmed: 30442948
PLoS Biol. 2009 Feb 17;7(2):e34
pubmed: 19226187
Proc Natl Acad Sci U S A. 1986 Jul;83(13):4913-7
pubmed: 3088567
J Mol Biol. 2020 Apr 3;432(8):2799-2821
pubmed: 31887286
Curr Opin Cell Biol. 2019 Dec;61:117-125
pubmed: 31480011
Autophagy. 2019 Sep;15(9):1495-1505
pubmed: 30821607
J Biol Chem. 2019 Jul 19;294(29):11054-11059
pubmed: 31097543
Cell Rep. 2016 May 17;15(7):1455-1466
pubmed: 27160897
Autophagy. 2018;14(3):534-551
pubmed: 28980850
Trends Biochem Sci. 2019 Oct;44(10):872-884
pubmed: 31079890
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31882-31890
pubmed: 33262278
Lancet Neurol. 2018 Sep;17(9):802-815
pubmed: 30129476
Nature. 2020 Feb;578(7794):301-305
pubmed: 32025038
Trends Cell Biol. 2016 Sep;26(9):668-679
pubmed: 27289443
Autophagy. 2011 Apr;7(4):412-25
pubmed: 21193837
Biochim Biophys Acta. 2015 Aug;1852(8):1561-73
pubmed: 25912737
J Biol Chem. 2003 Jul 4;278(27):25009-13
pubmed: 12719433
Nat Struct Mol Biol. 2020 Jun;27(6):598-602
pubmed: 32514176
Cell. 2020 Apr 16;181(2):325-345.e28
pubmed: 32302571
ACS Chem Neurosci. 2016 Jul 20;7(7):995-1003
pubmed: 27225823
Nature. 2018 Jun;558(7708):136-140
pubmed: 29849149
Nat Commun. 2017 Aug 17;8(1):275
pubmed: 28819146
Cell Death Dis. 2018 Jan 22;9(2):67
pubmed: 29358575
Cold Spring Harb Perspect Med. 2017 Jul 5;7(7):
pubmed: 27940599

Auteurs

Bin Dai (B)

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China.

Tao Zhong (T)

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China.

Zhi-Xian Chen (ZX)

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China.

Wang Chen (W)

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China.

Na Zhang (N)

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China.

Xiao-Ling Liu (XL)

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China.

Li-Qiang Wang (LQ)

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China.

Jie Chen (J)

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China.

Yi Liang (Y)

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China. Electronic address: liangyi@whu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH