Effects of NO modulators and antioxidants on endocrine and cellular markers in rats under repetitive restraint stress.
Corticosterone
NF-κB
NO modulators
Restraint stress
Stress markers
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Feb 2022
Feb 2022
Historique:
received:
15
07
2021
accepted:
13
09
2021
pubmed:
26
9
2021
medline:
1
2
2022
entrez:
25
9
2021
Statut:
ppublish
Résumé
The aim of the study was to evaluate the effects of NO modulators and antioxidant treatments on endocrine (plasma corticosterone), cellular (heat shock protein 70 [HSP-70] and nuclear factor κB [NF-κB]), and oxidative stress markers in repetitively stressed rats. Repetitive (restraint) stress (RS 1hr/day × 21 days) enhanced the levels of cellular and endocrine stress markers in the rat blood and altered pro-oxidant-antioxidant balance differentially in the control and test groups. Exposure to repetitive RS enhanced malondialdehyde (MDA) levels, lowered reduced glutathione (GSH), and superoxide dismutase (SOD) levels as well as nitric oxide (NOx) levels. NO precursor L-arginine and NO synthase inhibitors were found to differentially modulate stress-induced mechanism in altering NF-κB, HSP-70, and corticosterone levels. The antioxidant L-ascorbic acid (L-AA) significantly suppressed RS(×21)-induced elevation of NF-κB and HSP-70 levels, depicting protective effects, as also evidenced by reversal of elevated corticosterone levels. The results suggest that NO modulators and antioxidants differentially influence repetitive stress-induced changes in endocrine and cellular markers, and the complex interaction between NO and cellular markers like HSP70 and NF-κB plays a crucial modulatory role in this phenomenon.
Identifiants
pubmed: 34561803
doi: 10.1007/s11356-021-16592-6
pii: 10.1007/s11356-021-16592-6
doi:
Substances chimiques
Antioxidants
0
NF-kappa B
0
Nitric Oxide
31C4KY9ESH
Superoxide Dismutase
EC 1.15.1.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
12043-12053Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Alp NJ, Channon KM (2004) Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol 24:413–420
doi: 10.1161/01.ATV.0000110785.96039.f6
Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes—integrating cell survival and death. J Biosci 32(3):595–610
doi: 10.1007/s12038-007-0059-3
Baig MS, Zaichick SV, Mao M, de Abreu AL, Bakhshi FR, Hart PC, Saqib U, Deng J, Chatterjee S, Block ML, Vogel SM, Malik AB, Consolaro MEL, Christman JW, Minshall RD, Gantner BN, Bonini MG (2015)NOS1-derived nitric oxide promotes NF-κB transcriptional activity through inhibition of suppressor of cytokine signaling-1. J Exp Med 212:1725–1738
doi: 10.1084/jem.20140654
Barkha S, Smita J, Falaq N, Safiya K, Afzal RM, Siddique YH (2012) Effect of L-ascorbic acid on the hsp70 expression and tissue damage in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg. Toxicol Int 19(3):301–305
doi: 10.4103/0971-6580.103673
Bugajski AJ, Gadek-Michalska A, Bugajski J (2006) The involvement of nitric oxide and prostaglandins in the cholinergic stimulation of hypothalamic-pituitary-adrenal response during crowding stress. J Physiol Pharmacol 57:463–477
Calabrese V, Butterfield DA, Scapagnini G, Stella AM, Maines MD (2006) Redox regulation of heat shock protein expression by signaling involving nitric oxide and carbon monoxide: relevance to brain aging, neurodegenerative disorders, and longevity. Antioxid Redox Signal 8(3-4):444–477
doi: 10.1089/ars.2006.8.444
Chakraborti A, Gulati K, Banerjee BD, Ray A (2007) Possible involvement of free radicals in the differential neurobehavioral responses to stress in male and female rats. Behav Brain Res 179:321–325
doi: 10.1016/j.bbr.2007.02.018
Chakraborti A, Gulati K, Ray A (2008) Age related changes in stress-induced neurobehavioral effects in rats modulation by antioxidants and nitrergic agents. Behav Brain Res 194:86–91
doi: 10.1016/j.bbr.2008.06.027
Chrousos GP (1988) Stressors, stress and neuroendocrine integration of the adaptive response, The 1997 Hans Selye Memorial Lecture. Ann N Y Acad Sci 851:311–335
doi: 10.1111/j.1749-6632.1998.tb09006.x
Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5:374–381
doi: 10.1038/nrendo.2009.106
Dhabhar FS, Miller AH, McEwen BS, Spencer RL (1996)Stress-induced changes in blood leukocyte distribution: role of adrenal steroid hormones. J Immunol 157:1638–1644
doi: 10.4049/jimmunol.157.4.1638
Elenkov IJ, Chrousos GP (1999) Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol Metab 10(9):359–368
doi: 10.1016/S1043-2760(99)00188-5
Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:70–77
doi: 10.1016/0003-9861(59)90090-6
Frank M, Anthony MM (1999)NF-kB as a primary regulator of stress response. Oncogene 18:6163–6171
doi: 10.1038/sj.onc.1203174
Glaser R, Kiecolt-Glaser JK (2005) Stress induced immune dysfunction: implications for health. Nat Rev Immunol 5(3):243–251
doi: 10.1038/nri1571
Glavin GB, Murison R, Overmier JB, Pare WP, Bakke HK, Henke RG, Hernandez DE (1991) The neurobiology of stress ulcers. Brain Res Rev 16(3):301–343
doi: 10.1016/0165-0173(91)90012-W
Gold PW, Chrousos GP (2002) Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry 7:254–275
doi: 10.1038/sj.mp.4001032
Gul A, Kunwar B, Mazhar Z, Faizi S, Ahmed D, Shah MR, Simjee SU (2018) Rutin and rutin-conjugated solid nanoparticles ameliorate collagen-induced arthritis in rats through inhibition of NF-κB and iNOS activation. Int Immunopharmacol 59:310–317
doi: 10.1016/j.intimp.2018.04.017
Gulati K, Chakraborti A, Ray A (2007) Modulation of stress-induced neurobehavioral changes and brain oxidative injury by nitric oxide (NO) mimetics in rats. Behav Brain Res 183(2):226–230
doi: 10.1016/j.bbr.2007.06.018
Hayashida N, Inouye S, Fujimoto M, Tanaka Y, Izu H, Takaki E, Ichikawa H, Rho J, Nakai A (2006) A novel HSF1-mediated death pathway that is suppressed by heat shock proteins. EMBO J 25(20):4773–4783
doi: 10.1038/sj.emboj.7601370
Henderson B (2010) Integrating the cell stress response: a new view of molecular chaperones as immunological and physiological homeostatic regulators. Cell Biochem Funct 28(1):1–14
doi: 10.1002/cbf.1609
Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamopituitary-adrenocortical axis. Trends Neurosci 20:78–84
doi: 10.1016/S0166-2236(96)10069-2
Horowitz M, Robinson SD (2007) Heat shock proteins and the heat shock response during hyperthermia and its modulation by altered physiological conditions. Prog Brain Res 162:4336
Huang A, Vita JA, Venema RC, Keaney JFJ (2000) Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin. J Biol Chem 275(23):17399–17406
doi: 10.1074/jbc.M002248200
Khan SA, Peter SMC (2015)Short-term in situ action of melatonin on ion transport in mice kept at restraint stress. J Endocrinol Reprod 19:20
doi: 10.18519/jer/2015/v19/86052
Korhonen R, Lahti A, Kankaanranta H, Moilanen E (2005) Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 4(4):471–479
doi: 10.2174/1568010054526359
Kvetnansky R, Sabban EL, Palkovits M (2009) Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 89(2):535–606
doi: 10.1152/physrev.00042.2006
Levenstein S, Prantera C, Varvo V, Scribano ML, Andreoli A, Luzi C, Arcà M, Berto E, Milite G, Marcheggiano A (2000) Stress and exacerbation in ulcerative colitis : a prospective study of patients enrolled in remission. Am J Gastroenterol 95:1213–1220
doi: 10.1111/j.1572-0241.2000.02012.x
Lin KY, Lin SC (2004) A tale of two molecules: nitric oxide and asymmetric dimethylarginine. Acta Cardiol Sin 20:201–211
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275
doi: 10.1016/S0021-9258(19)52451-6
Mahmoud KZ, Edens FW, Eisen EJ, Havenstein GB (2004) Ascorbic acid decreases heat shock protein 70 and plasma corticosterone response in broilers (Gallus gallusdomesticus) subjected to cyclic heat stress. Comp Biochem Physiol B Biochem Mol Biol 137:35–42
doi: 10.1016/j.cbpc.2003.09.013
Mikirova N, Rogers A, Casciari J, Taylor P (2012) Effect of high dose intravenous ascorbic acid on the level of inflammation in patients with rheumatoid arthritis. Mod Res Inflamm 1(2):26–32
Milarski KL, Morimoto RI (1986) Expression of human HSP70 during the synthetic phase of the cell cycle. Proc Natl Acad Sci U S A 83:9517–9521
doi: 10.1073/pnas.83.24.9517
Moncada S, Higg A (1993) The L-Arginine nitric oxide pathway. N Engl J Med 329:2002–2012
doi: 10.1056/NEJM199312303292706
Mulero MC, Huxford T, Ghosh G (2019) NF-κB, IκB, and IKK: Integral Components of Immune System Signaling. Adv Exp Med Biol 1172:207–226
doi: 10.1007/978-981-13-9367-9_10
Munhoz CD, Lepsch LB, Kawamoto EM, Malta MB, Lima S, Avellar MC, Sapolsky RM, Scavone C (2006) Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-kappaB in the frontal cortex and hippocampus via glucocorticoid secretion. J Neurosci 26(14):3813–3820
doi: 10.1523/JNEUROSCI.4398-05.2006
Nandi A, Chatterjee ΙΒ (1988) Assay of superoxide dismutase activity in animal tissues. J Biosci 13(3):305–315
doi: 10.1007/BF02712155
Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358
doi: 10.1016/0003-2697(79)90738-3
Pal R, Gulati K, Banerjee BD, Ray A (2006) Role of free radicals in stress-induced neurobehavioral changes in rats. Indian J Exp Biol 44:816–820
Pal G, Jena J, Swain TR, Ray A (2014) Possible involvement of free radicals and anti-oxidant in acute stress induced inflammation and immunity in rats. Indo Am J Pharm Res 4(11)
Pal G, Behl T, Rohil V, Khandelwal M, Gupta G, Jena J (2020) Evaluation of oxidative stress and its modulation by L-arginine and L-ascorbic acid in repetitive restraint stress model in Wistar rats. Obes Med 17:100172
doi: 10.1016/j.obmed.2019.100172
Pare WP, Glavin GB (1986) Restraint stress in biomedical research: a review. Neurosci Biobehav Rev 10:339–370
doi: 10.1016/0149-7634(86)90017-5
Plaschke K, Feindt J, Djuric J, Heiland S, Autschbach F, Lewicka S et al (2006) Chronic corticosterone induced deterioration in rat behaviour is not paralleled by changes in hippocampal NF-kappa B activation. Stress 9(2):97–106
doi: 10.1080/10253890600691551
Potter, Zautra (1997) Stressful life events effects on rheumatoid arthritis disease activity. J Consult Clin Psychol 65:319–323
doi: 10.1037/0022-006X.65.2.319
Prado CM, Martins MA, Tibério IFLC (2011) Nitric oxide in asthma physiopathology. ISRN Allergy 2011:1–13
doi: 10.5402/2011/832560
Pratt WB, Galigniana MD, Morishima Y, Murphy PJM (2004) Role of molecular chaperones in steroid receptor action. Essays Biochem 40:41–58
doi: 10.1042/bse0400041
Ran R, Lu A, Zhang L, Tang Y, Zhu H, Xu H, Feng Y, Han C, Zhou G, Rigby AC, Sharp FR (2004) Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev 18(12):1466–1481
doi: 10.1101/gad.1188204
Ray A, Chakraborti A, Gulati K (2007) Current trends in nitric oxide research. Cell Mol Biol 53(1):3–14
Reiche EM, Morimoto HK, Nunes SMV (2005) Stress and depression induced immune dysfunction: implications for development and progression of cancer. Int Rev Psychiatry 17(6):515–527
doi: 10.1080/02646830500382102
Sekiyama A, Ueda H, Kashiwamura S, Nishida K, Kawai K, Teshima-kondo S, Rokutan K, Okamura H (2005)IL-18; a cytokine translates a stress into medical science. J Med Investig 52:236–239
doi: 10.2152/jmi.52.236
Selye H (1974) Stress without Distress. Mc Clelland and Steward Ltd, Toronto
Selye H (1976) Stress in Health and Disease. Butterworths, Boston
Shi YG, Thomas JO (1992) The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate. Mol Cell Biol 12(5):2186–2192
Tavaria M, Gabriele T, Kola I, Anderson RL (1996) A hitchhiker’s guide to the human Hsp70 family. Cell Stress Chaperones 1(1):23–28
doi: 10.1379/1466-1268(1996)001<0023:AHSGTT>2.3.CO;2
Tracey WR, Tse J, Carter G (1995) Lipopolysaccharide induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J Pharmacol Exp Ther 282:1011–1015
Vd Uscio L, Sheldon M, Darcy R, Leslie S, Zvonimir SK (2003)Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity. Circ Res 92:88–95
doi: 10.1161/01.RES.0000049166.33035.62
Werner ER, Werner-Felmayer G (2002) Biopterin analogues: novel nitric oxide synthase inhibitors with immunosuppressive action. Curr Drug Metab 3(2):119–121
doi: 10.2174/1389200024605118
Wong DL, Tank AW (2007)Stress-induced catecholaminergic function: transcriptional and post-transcriptional control. Stress 10:121–130
doi: 10.1080/10253890701393529
Wong YN, Chien BM, D’mello AP (1994) Analysis of corticosterone in rat plasma by high performance liquid chromatography. J Chromatogr B Biomed Appl 1(2):211–218
doi: 10.1016/0378-4347(94)00346-7
Yang EV, Glaser R (2000) Stress induced immunomodulation: impact of immune defenses against infectious disease. Biomed Pharmacother 54(5):245–250
doi: 10.1016/S0753-3322(00)80066-9
Zeise E, Kuhl N, Kunz J, Rensing L (1998) Nuclear translocation of stress protein Hsc70 during S phase in rat C6 glioma cells. Cell Stress Chaperones 3(2):94–99
doi: 10.1379/1466-1268(1998)003<0094:NTOSPH>2.3.CO;2