Characterization of Neodymium Speciation in the Presence of Fulvic Acid by Ion Exchange Technique and Single Particle ICP-MS.
Ion-exchange technique
Neodymium
Rare earth elements
Single particle ICP-MS
Speciation
Journal
Bulletin of environmental contamination and toxicology
ISSN: 1432-0800
Titre abrégé: Bull Environ Contam Toxicol
Pays: United States
ID NLM: 0046021
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
received:
29
06
2021
accepted:
13
08
2021
pubmed:
26
9
2021
medline:
7
4
2022
entrez:
25
9
2021
Statut:
ppublish
Résumé
It has been well known that the free ion concentration of metals plays a vital role in metal bioavailability. However, measurement of this fraction is still not easy over years of development. Nowadays, rare earth elements (REEs) are drawing more attentions as an emerging contaminant due to their wide applications in our daily life. To analyze the free ion concentration of neodymium (Nd), we adopted ion-exchange technique (IET) to investigate the changes on Nd free ion concentration in the presence of fulvic acid (FA). With the dynamic mode of IET analysis, the concentrations of Nd free ion were in the range of 0.85-36.8 × 10
Identifiants
pubmed: 34562127
doi: 10.1007/s00128-021-03360-y
pii: 10.1007/s00128-021-03360-y
doi:
Substances chimiques
Benzopyrans
0
Metals, Rare Earth
0
Neodymium
2I87U3734A
fulvic acid
XII14C5FXV
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
779-785Subventions
Organisme : national key research and development plan
ID : 2018YFC1801100
Organisme : national natural science foundation of china
ID : 21607178
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Adegboyega NF, Sharma VK, Siskova K, Zbořil R, Sohn M, Schultz BJ, Banerjee S (2013) Interactions of aqueous Ag
doi: 10.1021/es302305f
Aiken GR, Hsu-Kim H, Ryan JN (2011) Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ Sci Technol 45:3196–3201
doi: 10.1021/es103992s
Alberti G, Biesuz R, Huidobro C, Companys E, Puy J, Galceran J (2007) A comparison between the determination of free Pb(II) by two techniques: absence of gradients and Nernstian equilibrium stripping and resin titration. Anal Chim Acta 599:41–50
doi: 10.1016/j.aca.2007.07.055
Bligh MW, Waite TD (2010) Role of heterogeneous precipitation in determining the nature of products formed on oxidation of Fe(II) in seawater containing natural organic matter. Environ Sci Technol 44:6667–6673
doi: 10.1021/es101046y
El-Akl P, Smith S, Wilkinson KJ (2015) Linking the chemical speciation of cerium to its bioavailability in water for a freshwater alga. Environ Toxicol Chem 34:1711–1719
doi: 10.1002/etc.2991
Fakhari AR, Shamsipur M, Ghanbari K (2002) Zn(II)-selective membrane electrode based on tetra(2-aminophenyl) porphyrin. Anal Chim Acta 460:177–183
doi: 10.1016/S0003-2670(02)00200-3
Fréchette-Viens L, Hadioui M, Wilkinson KJ (2017) Practical limitations of single particle ICP-MS in the determination of nanoparticle size distributions and dissolution: case of rare earth oxides. Talanta 163:121–126
doi: 10.1016/j.talanta.2016.10.093
Gonzalez V, Vignati DAL, Leyval C, Giamberini L (2014) Environmental fate and ecotoxicity of lanthanides: are they a uniform group beyond chemistry? Environ Int 71:148–157
doi: 10.1016/j.envint.2014.06.019
Granado-Castro MD, Casanueva-Marenco MJ, Galindo-Riaño MD, El Mai H, Díaz-de-Alba M (2018) A separation and preconcentration process for metal speciation using a liquid membrane: a case study for iron speciation in seawater. Mar Chem 198:56–63
doi: 10.1016/j.marchem.2017.11.009
Hadioui M, Peyrot C, Wilkinson KJ (2014) Improvements to single particle ICPMS by the online coupling of ion exchange resins. Anal Chem 86:4668–4674
doi: 10.1021/ac5004932
Jones AM, Xue Y, Kinsela AS, Wilcken KM, Collins RN (2016) Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters. Sci Total Environ 547:104–113
doi: 10.1016/j.scitotenv.2016.01.024
Justine-Anne R, Marc-Alexandre F, Scott S, Wilkinson KJ (2018) Determination of the speciation and bioavailability of samarium to Chlamydomonas reinhardtii in the presence of natural organic matter. Environ Toxicol Chem 37:1623–1631
doi: 10.1002/etc.4106
Leguay S, Campbell PGC, Fortin C (2016) Determination of the free-ion concentration of rare earth elements by an ion-exchange technique: implementation, evaluation and limits. Environ Chem 13:478–488
doi: 10.1071/EN15136
Li W, Zhao H, Teasdale PR, John R, Wang F (2005) Metal speciation measurement by diffusive gradients in thin films technique with different binding phases. Anal Chim Acta 533:193–202
doi: 10.1016/j.aca.2004.11.019
Liu W-S, Wu L-L, Zheng M-Y, Chao Y-Q, Zhao C-M, Zhong X, Ding K-B, Huot H, Zhang M-Y, Tang Y-T, Li C, Qiu R-L (2019) Controls on rare-earth element transport in a river impacted by ion-adsorption rare-earth mining. Sci Total Environ 660:697–704
doi: 10.1016/j.scitotenv.2019.01.076
Luster J, Lloyd T, Sposito G, Fry IV (1996) Multi-wavelength molecular fluorescence spectrometry for quantitative characterization of copper(II) and aluminum(III) complexation by dissolved organic matter. Environ Sci Technol 30:1565–1574
doi: 10.1021/es950542u
Migaszewski ZM, Gałuszka A (2015) The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: a review. Crit Rev Environ Sci Technol 45:429–471
doi: 10.1080/10643389.2013.866622
Nduwayezu I, Mostafavirad F, Hadioui M, Wilkinson KJ (2016) Speciation of a lanthanide (Sm) using an ion exchange resin. Anal Methods 8:6774–6781
doi: 10.1039/C6AY02018F
Pearson HBC, Comber SDW, Braungardt C, Worsfold PJ (2017) Predicting copper speciation in estuarine waters — Is dissolved organic carbon a good proxy for the presence of organic ligands? Environ Sci Technol 51:2206–2216
doi: 10.1021/acs.est.6b05510
Pesavento M, Alberti G, Biesuz R (2009) Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review. Anal Chim Acta 631:129–141
doi: 10.1016/j.aca.2008.10.046
Ryan D, Weber J (1982) Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid. Anal Chem 54:986–990
doi: 10.1021/ac00243a033
Sonke JE, Salters VJM (2006) Lanthanide–humic substances complexation. I. Experimental evidence for a lanthanide contraction effect. Geochim Cosmochim Acta 70:1495–1506
doi: 10.1016/j.gca.2005.11.017
Tan Q-G, Yang G, Wilkinson KJ (2017) Biotic ligand model explains the effects of competition but not complexation for Sm biouptake by Chlamydomonas reinhardtii. Chemosphere 168:426–434
doi: 10.1016/j.chemosphere.2016.10.051
Yan P, Xia J-S, Chen Y-P, Liu Z-P, Guo J-S, Shen Y, Zhang C-C, Wang J (2017) Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry. Bioresour Technol 232:354–363
doi: 10.1016/j.biortech.2017.02.067
Zhao C-M, Wilkinson KJ (2015) Biotic ligand model does not predict the bioavailability of rare earth elements in the presence of organic ligands. Environ Sci Technol 49:2207–2214
doi: 10.1021/es505443s
Zhao Y, Liang J, Meng H, Yin Y, Zhen H, Zheng X, Shi H, Wu X, Zu Y, Wang B, Fan L, Zhang K (2021) Rare earth elements lanthanum and praseodymium adversely affect neural and cardiovascular development in zebrafish (Danio rerio). Environ Sci Technol 55:1155–1166
doi: 10.1021/acs.est.0c06632
Zinoubi K, Majdoub H, Barhoumi H, Boufi S, Jaffrezic-Renault N (2017) Determination of trace heavy metal ions by anodic stripping voltammetry using nanofibrillated cellulose modified electrode. J Electroanal Chem 799:70–77
doi: 10.1016/j.jelechem.2017.05.039