Hybrid Technologies Combining Solid-State Sensors and Paper/Fabric Fluidics for Wearable Analytical Devices.

clinical analysis electrochemical (bio)sensor fabric microfluidics paper microfluidics solid-state sensors wearables

Journal

Biosensors
ISSN: 2079-6374
Titre abrégé: Biosensors (Basel)
Pays: Switzerland
ID NLM: 101609191

Informations de publication

Date de publication:
28 Aug 2021
Historique:
received: 05 08 2021
revised: 25 08 2021
accepted: 26 08 2021
entrez: 25 9 2021
pubmed: 26 9 2021
medline: 6 1 2022
Statut: epublish

Résumé

The development of diagnostic tools for measuring a wide spectrum of target analytes, from biomarkers to other biochemical parameters in biological fluids, has experienced a significant growth in the last decades, with a good number of such tools entering the market. Recently, a clear focus has been put on miniaturized wearable devices, which offer powerful capabilities for real-time and continuous analysis of biofluids, mainly sweat, and can be used in athletics, consumer wellness, military, and healthcare applications. Sweat is an attractive biofluid in which different biomarkers could be noninvasively measured to provide rapid information about the physical state of an individual. Wearable devices reported so far often provide discrete (single) measurements of the target analytes, most of them in the form of a yes/no qualitative response. However, quantitative biomarker analysis over certain periods of time is highly demanded for many applications such as the practice of sports or the precise control of the patient status in hospital settings. For this, a feasible combination of fluidic elements and sensor architectures has been sought. In this regard, this paper shows a concise overview of analytical tools based on the use of capillary-driven fluidics taking place on paper or fabric devices integrated with solid-state sensors fabricated by thick film technologies. The main advantages and limitations of the current technologies are pointed out together with the progress towards the development of functional devices. Those approaches reported in the last decade are examined in detail.

Identifiants

pubmed: 34562893
pii: bios11090303
doi: 10.3390/bios11090303
pmc: PMC8467283
pii:
doi:

Substances chimiques

Biomarkers 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : CRSIIS_177255/1

Références

Sci Adv. 2020 Dec 11;6(50):
pubmed: 33310859
Sensors (Basel). 2020 Feb 11;20(4):
pubmed: 32054035
Lab Chip. 2013 May 21;13(10):1937-47
pubmed: 23536189
Nat Rev Microbiol. 2004 Mar;2(3):231-40
pubmed: 15083158
Lab Chip. 2012 Jan 7;12(1):209-18
pubmed: 22089026
Anal Chem. 2015 Jan 6;87(1):19-41
pubmed: 25375292
Talanta. 2020 May 15;212:120786
pubmed: 32113549
ACS Appl Mater Interfaces. 2010 Jan;2(1):1-6
pubmed: 20356211
Biosens Bioelectron. 2019 Mar 15;129:15-23
pubmed: 30682684
Anal Chim Acta. 2018 Feb 25;1001:1-17
pubmed: 29291790
Ann Clin Biochem. 2010 Jul;47(Pt 4):358-65
pubmed: 20592335
ACS Nano. 2018 Dec 26;12(12):12646-12656
pubmed: 30543395
Biomicrofluidics. 2013 Sep 06;7(5):51501
pubmed: 24086179
Lab Chip. 2020 Jan 7;20(1):9-34
pubmed: 31620764
Anal Bioanal Chem. 2013 Sep;405(24):7573-95
pubmed: 23604524
Anal Chem. 2018 Dec 4;90(23):13815-13825
pubmed: 30452240
Lab Chip. 2015 May 21;15(10):2173-80
pubmed: 25813247
Micromachines (Basel). 2017 Aug 31;8(9):
pubmed: 30400457
Biosens Bioelectron. 2021 Mar 1;175:112844
pubmed: 33248878
Glob Chall. 2019 Sep 09;3(12):1900041
pubmed: 31832235
Angew Chem Int Ed Engl. 2007;46(8):1318-20
pubmed: 17211899
Biosens Bioelectron. 2017 Jul 15;93:139-145
pubmed: 27743863
Analyst. 2013 Sep 21;138(18):5208-15
pubmed: 23775189
Talanta. 2019 Jan 15;192:424-430
pubmed: 30348413
Lab Chip. 2011 Aug 7;11(15):2618-24
pubmed: 21677945
Analyst. 2020 Aug 21;145(16):5388-5399
pubmed: 32700700
ACS Sens. 2017 Mar 24;2(3):443-448
pubmed: 28723207
Anal Chem. 2004 Oct 1;76(19):5649-56
pubmed: 15456282
Analyst. 2021 Jun 14;146(12):3908-3917
pubmed: 33970172
ACS Appl Mater Interfaces. 2019 Apr 24;11(16):14567-14575
pubmed: 30942999
Talanta. 2020 Nov 1;219:121145
pubmed: 32887090
Biosens Bioelectron. 2021 Feb 15;174:112828
pubmed: 33250335
Analyst. 2010 Jun;135(6):1230-4
pubmed: 20498876
ACS Sens. 2019 Aug 23;4(8):2039-2047
pubmed: 31282146
Biosens Bioelectron. 2020 Nov 15;168:112391
pubmed: 32862091
Int J Exerc Sci. 2018 Jan 02;11(7):503-515
pubmed: 29541338
Lab Chip. 2011 Aug 7;11(15):2493-9
pubmed: 21735030
IEEE Trans Biomed Eng. 2015 Jun;62(6):1457-65
pubmed: 25398174
Biosensors (Basel). 2020 Jul 09;10(7):
pubmed: 32660011
J Mater Chem B. 2014 Sep 14;2(34):5620-5626
pubmed: 32262196
Lab Chip. 2017 Feb 14;17(4):710-716
pubmed: 28150821

Auteurs

Meritxell Rovira (M)

Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, Bellaterra, 08193 Barcelona, Spain.

César Fernández-Sánchez (C)

Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.

Cecilia Jiménez-Jorquera (C)

Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, Bellaterra, 08193 Barcelona, Spain.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH