Computerized Music-Reading Intervention Improves Resistance to Unisensory Distraction Within a Multisensory Task, in Young and Older Adults.

EEG aging deviance distraction functional connectivity music training

Journal

Frontiers in human neuroscience
ISSN: 1662-5161
Titre abrégé: Front Hum Neurosci
Pays: Switzerland
ID NLM: 101477954

Informations de publication

Date de publication:
2021
Historique:
received: 16 07 2021
accepted: 23 08 2021
entrez: 27 9 2021
pubmed: 28 9 2021
medline: 28 9 2021
Statut: epublish

Résumé

Incoming information from multiple sensory channels compete for attention. Processing the relevant ones and ignoring distractors, while at the same time monitoring the environment for potential threats, is crucial for survival, throughout the lifespan. However, sensory and cognitive mechanisms often decline in aging populations, making them more susceptible to distraction. Previous interventions in older adults have successfully improved resistance to distraction, but the inclusion of multisensory integration, with its unique properties in attentional capture, in the training protocol is underexplored. Here, we studied whether, and how, a 4-week intervention, which targets audiovisual integration, affects the ability to deal with task-irrelevant unisensory deviants within a multisensory task. Musically naïve participants engaged in a computerized music reading game and were asked to detect audiovisual incongruences between the pitch of a song's melody and the position of a disk on the screen, similar to a simplistic music staff. The effects of the intervention were evaluated via behavioral and EEG measurements in young and older adults. Behavioral findings include the absence of age-related differences in distraction and the indirect improvement of performance due to the intervention, seen as an amelioration of response bias. An asymmetry between the effects of auditory and visual deviants was identified and attributed to modality dominance. The electroencephalographic results showed that both groups shared an increase in activation strength after training, when processing auditory deviants, located in the left dorsolateral prefrontal cortex. A functional connectivity analysis revealed that only young adults improved flow of information, in a network comprised of a fronto-parietal subnetwork and a multisensory temporal area. Overall, both behavioral measures and neurophysiological findings suggest that the intervention was indirectly successful, driving a shift in response strategy in the cognitive domain and higher-level or multisensory brain areas, and leaving lower level unisensory processing unaffected.

Identifiants

pubmed: 34566611
doi: 10.3389/fnhum.2021.742607
pmc: PMC8461100
doi:

Types de publication

Journal Article

Langues

eng

Pagination

742607

Informations de copyright

Copyright © 2021 Karagiorgis, Chalas, Karagianni, Papadelis, Vivas, Bamidis and Paraskevopoulos.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Nat Rev Neurosci. 2001 Mar;2(3):194-203
pubmed: 11256080
JMIR Serious Games. 2016 Jul 15;4(2):e11
pubmed: 27421244
PLoS One. 2012;7(5):e36534
pubmed: 22570723
Psychol Bull. 2010 Nov;136(6):975-1022
pubmed: 21038938
Cortex. 2020 Dec;133:309-327
pubmed: 33161278
Cereb Cortex. 2015 Feb;25(2):396-405
pubmed: 23985135
Soc Cogn Affect Neurosci. 2020 Jul 01;:
pubmed: 32613224
Cognition. 2019 Jun;187:38-49
pubmed: 30825813
Neurobiol Aging. 2011 Apr;32(4):655-68
pubmed: 19428142
Neurosci Biobehav Rev. 2014 Apr;41:16-25
pubmed: 23220697
Wiley Interdiscip Rev Cogn Sci. 2019 Nov;10(6):e1512
pubmed: 31183981
J Neurosci. 2011 May 4;31(18):6891-9
pubmed: 21543619
Psychol Aging. 2020 Aug;35(5):765-772
pubmed: 32744856
Dev Neuropsychol. 2008;33(2):101-23
pubmed: 18443972
Neuroimage. 2019 Jan 1;184:697-706
pubmed: 30268847
J Exp Psychol Hum Percept Perform. 2009 Apr;35(2):565-74
pubmed: 19331508
Cereb Cortex. 2014 Dec;24(12):3365-78
pubmed: 23926116
Front Psychol. 2018 Dec 17;9:2564
pubmed: 30618983
Neuroinformatics. 2016 Jul;14(3):339-51
pubmed: 27075850
J Neurosci. 2018 Aug 15;38(33):7303-7313
pubmed: 30037829
J Cogn Neurosci. 2014 Oct;26(10):2224-38
pubmed: 24669793
J Clin Neurophysiol. 2002 Apr;19(2):113-24
pubmed: 11997722
Nat Rev Neurosci. 2002 Mar;3(3):201-15
pubmed: 11994752
BMC Neurol. 2008 Sep 25;8:35
pubmed: 18817554
F1000Res. 2019 Sep 27;8:
pubmed: 31602292
Neuroimage. 2010 Dec;53(4):1197-207
pubmed: 20600983
Brain Sci. 2020 Aug 08;10(8):
pubmed: 32784358
Neuroimage. 2014 Jul 1;94:287-302
pubmed: 24650594
Annu Rev Neurosci. 1995;18:193-222
pubmed: 7605061
Clin Neurophysiol. 2004 Jan;115(1):140-4
pubmed: 14706481
Int J Psychophysiol. 1994 Oct;18(1):49-65
pubmed: 7876038
Neurosci Biobehav Rev. 2014 Oct;46 Pt 1:58-70
pubmed: 25003803
Clin Neurophysiol. 2007 Oct;118(10):2128-48
pubmed: 17573239
J Cereb Blood Flow Metab. 1991 Jul;11(4):690-9
pubmed: 2050758
PLoS One. 2013 Jul 04;8(7):e68910
pubmed: 23861951
Brain Cogn. 2014 Mar;85:209-19
pubmed: 24434022
Trends Cogn Sci. 2010 Sep;14(9):400-10
pubmed: 20675182
Neurobiol Aging. 2006 Aug;27(8):1155-63
pubmed: 16039016
Neuroinformatics. 2013 Oct;11(4):405-34
pubmed: 23812847
Trends Cogn Sci. 2012 Feb;16(2):106-13
pubmed: 22245618
Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22682-6
pubmed: 21156826
Front Hum Neurosci. 2012 Jun 21;6:183
pubmed: 22737115
Front Integr Neurosci. 2015 Mar 26;9:19
pubmed: 25859192
Front Psychol. 2015 Jan 20;5:1559
pubmed: 25653630
Int J Psychophysiol. 2019 Dec;146:85-100
pubmed: 31654696
J Cogn Neurosci. 2015 Jul;27(7):1275-85
pubmed: 25603025
Eur J Neurosci. 2013 Apr;37(8):1295-307
pubmed: 23301775
Int J Environ Res Public Health. 2018 Apr 11;15(4):
pubmed: 29641462
Acta Psychol (Amst). 2018 Nov;191:101-111
pubmed: 30240890
J Am Geriatr Soc. 2005 Apr;53(4):695-9
pubmed: 15817019
BMC Neurosci. 2018 Apr 19;19(1):25
pubmed: 29673322
Percept Psychophys. 2003 Jul;65(5):817-28
pubmed: 12956588
Front Psychol. 2019 Mar 11;10:299
pubmed: 30914983
Front Hum Neurosci. 2016 Mar 31;10:147
pubmed: 27064763
Dev Psychol. 2018 Jun;54(6):1020-1028
pubmed: 29309181
J Neurosci. 2011 Nov 23;31(47):17242-9
pubmed: 22114290
Neurosci Lett. 2013 Aug 26;548:120-5
pubmed: 23769731
Mem Cognit. 2007 Mar;35(2):352-64
pubmed: 17645176
PLoS One. 2014 Mar 19;9(3):e92269
pubmed: 24647551
Neuropsychology. 2019 Jan;33(1):1-12
pubmed: 30035554
Nat Neurosci. 2005 Oct;8(10):1298-300
pubmed: 16158065
Sci Rep. 2015 Dec 22;5:18883
pubmed: 26689815
Brain Stimul. 2019 Nov - Dec;12(6):1456-1463
pubmed: 31221553
Psychol Aging. 1999 Sep;14(3):507-19
pubmed: 10509703
Neural Plast. 2015;2015:172192
pubmed: 25945260
Philos Trans R Soc Lond B Biol Sci. 1998 Aug 29;353(1373):1245-55
pubmed: 9770219
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12522-7
pubmed: 26371305
Eur J Neurosci. 2015 Mar;41(5):709-17
pubmed: 25728187
J Exp Psychol Hum Percept Perform. 2015 Dec;41(6):1612-22
pubmed: 26214503
J Neurosci. 2015 Dec 2;35(48):15827-36
pubmed: 26631465
Clin Neurophysiol. 2013 Nov;124(11):2198-208
pubmed: 23770088
Cereb Cortex. 2021 Feb 5;31(3):1732-1743
pubmed: 33188384
Dialogues Clin Neurosci. 2013 Mar;15(1):109-19
pubmed: 23576894
Hum Brain Mapp. 1994;1(3):210-20
pubmed: 24578041
Comput Intell Neurosci. 2011;2011:938925
pubmed: 21403863
Nat Rev Neurosci. 2012 Jun 20;13(7):491-505
pubmed: 22714020
J Neurosci. 2012 Dec 12;32(50):18196-203
pubmed: 23238733
Psychol Aging. 2020 Aug;35(5):720-728
pubmed: 32744853
Neuroimage. 2014 Dec;103:65-74
pubmed: 25224995
Exp Psychol. 2006;53(2):111-6
pubmed: 16909935
Psychol Res. 2014;78(3):321-38
pubmed: 24363092
Neurosci Biobehav Rev. 2014 Jul;44:206-20
pubmed: 24705268
J Cogn Neurosci. 2012 Aug;24(8):1766-78
pubmed: 22621260
Ann N Y Acad Sci. 2015 Mar;1337:1-6
pubmed: 25773610
Cereb Cortex. 2021 Jan 1;31(1):123-137
pubmed: 32794571
Cereb Cortex. 2008 May;18(5):1201-9
pubmed: 17925295
Psychophysiology. 2009 May;46(3):645-54
pubmed: 19386054
Trends Cogn Sci. 2010 Mar;14(3):131-7
pubmed: 20153242
Annu Rev Psychol. 2009;60:173-96
pubmed: 19035823

Auteurs

Alexandros T Karagiorgis (AT)

School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
School of Music Studies, Faculty of Fine Arts, Aristotle University of Thessaloniki, Thessaloniki, Greece.

Nikolas Chalas (N)

Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.

Maria Karagianni (M)

School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.

Georgios Papadelis (G)

School of Music Studies, Faculty of Fine Arts, Aristotle University of Thessaloniki, Thessaloniki, Greece.

Ana B Vivas (AB)

Department of Psychology, CITY College, University of York Europe Campus, Thessaloniki, Greece.

Panagiotis Bamidis (P)

School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.

Evangelos Paraskevopoulos (E)

School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Department of Psychology, University of Cyprus, Nicosia, Cyprus.

Classifications MeSH