MONTI: A Multi-Omics Non-negative Tensor Decomposition Framework for Gene-Level Integrative Analysis.

cancer feature selection integrative analysis multi-omics tensor decomposition

Journal

Frontiers in genetics
ISSN: 1664-8021
Titre abrégé: Front Genet
Pays: Switzerland
ID NLM: 101560621

Informations de publication

Date de publication:
2021
Historique:
received: 19 03 2021
accepted: 12 08 2021
entrez: 27 9 2021
pubmed: 28 9 2021
medline: 28 9 2021
Statut: epublish

Résumé

Multi-omics data is frequently measured to enrich the comprehension of biological mechanisms underlying certain phenotypes. However, due to the complex relations and high dimension of multi-omics data, it is difficult to associate omics features to certain biological traits of interest. For example, the clinically valuable breast cancer subtypes are well-defined at the molecular level, but are poorly classified using gene expression data. Here, we propose a multi-omics analysis method called MONTI (Multi-Omics Non-negative Tensor decomposition for Integrative analysis), which goal is to select multi-omics features that are able to represent trait specific characteristics. Here, we demonstrate the strength of multi-omics integrated analysis in terms of cancer subtyping. The multi-omics data are first integrated in a biologically meaningful manner to form a three dimensional tensor, which is then decomposed using a non-negative tensor decomposition method. From the result, MONTI selects highly informative subtype specific multi-omics features. MONTI was applied to three case studies of 597 breast cancer, 314 colon cancer, and 305 stomach cancer cohorts. For all the case studies, we found that the subtype classification accuracy significantly improved when utilizing all available multi-omics data. MONTI was able to detect subtype specific gene sets that showed to be strongly regulated by certain omics, from which correlation between omics types could be inferred. Furthermore, various clinical attributes of nine cancer types were analyzed using MONTI, which showed that some clinical attributes could be well explained using multi-omics data. We demonstrated that integrating multi-omics data in a gene centric manner improves detecting cancer subtype specific features and other clinical features, which may be used to further understand the molecular characteristics of interest. The software and data used in this study are available at: https://github.com/inukj/MONTI.

Identifiants

pubmed: 34567063
doi: 10.3389/fgene.2021.682841
pmc: PMC8461247
doi:

Types de publication

Journal Article

Langues

eng

Pagination

682841

Commentaires et corrections

Type : ErratumIn

Informations de copyright

Copyright © 2021 Jung, Kim, Rhee, Lim and Kim.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Nat Methods. 2013 Nov;10(11):1108-15
pubmed: 24037242
Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10393-8
pubmed: 12917485
Mol Genet Genomic Med. 2020 Apr;8(4):e1161
pubmed: 32037691
Nat Rev Genet. 2009 Oct;10(10):669-80
pubmed: 19736561
Breast Cancer Res Treat. 2017 Nov;166(2):641-650
pubmed: 28798985
Breast Cancer Res Treat. 2011 Jan;125(1):55-63
pubmed: 20224928
Nucleic Acids Res. 2018 Jan 4;46(D1):D956-D963
pubmed: 29136207
Mol Syst Biol. 2018 Jun 20;14(6):e8124
pubmed: 29925568
Genes (Basel). 2019 Mar 07;10(3):
pubmed: 30866472
Genome Biol. 2017 May 5;18(1):83
pubmed: 28476144
Brief Bioinform. 2018 Nov 20;:
pubmed: 30462155
Cell. 2014 Oct 23;159(3):676-90
pubmed: 25417114
Oncotarget. 2017 Jun 27;8(37):62049-62056
pubmed: 28977925
Cancer Cell. 2016 May 9;29(5):711-722
pubmed: 27165743
Brief Bioinform. 2020 Dec 1;21(6):1920-1936
pubmed: 31774481
Bioinformatics. 2010 Jun 15;26(12):i237-45
pubmed: 20529912
Bioinformatics. 2000 Oct;16(10):906-14
pubmed: 11120680
Nature. 2012 Oct 4;490(7418):61-70
pubmed: 23000897
Nat Methods. 2014 Mar;11(3):333-7
pubmed: 24464287
Breast Cancer Res Treat. 2014 Aug;147(1):51-9
pubmed: 25086634
J Pathol. 2014 Mar;232(4):415-27
pubmed: 24293274
Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15149-54
pubmed: 11742071
Bioinformatics. 2018 Jul 1;34(13):i484-i493
pubmed: 29949979
Nucleic Acids Res. 2012 Oct;40(19):9379-91
pubmed: 22879375
Nature. 2014 Sep 11;513(7517):202-9
pubmed: 25079317
Genome Biol. 2020 May 11;21(1):111
pubmed: 32393329
Mol Cancer. 2017 Feb 7;16(1):35
pubmed: 28173803
Curr Protoc Mol Biol. 2015 Jan 05;109:21.29.1-21.29.9
pubmed: 25559105
Methods. 2016 Nov 1;110:81-89
pubmed: 27329435
J Clin Oncol. 2009 Mar 10;27(8):1160-7
pubmed: 19204204
J Natl Cancer Inst. 2014 Dec 04;107(1):357
pubmed: 25479802
Nature. 2012 Sep 6;489(7414):57-74
pubmed: 22955616
Cell Stem Cell. 2016 Dec 1;19(6):808-822
pubmed: 27867036
Nat Rev Genet. 2015 Feb;16(2):85-97
pubmed: 25582081
Bioinformatics. 2009 Nov 15;25(22):2906-12
pubmed: 19759197
Bioinformatics. 2006 Jul 15;22(14):e184-90
pubmed: 16873470
Nucleic Acids Res. 2020 Jan 8;48(D1):D127-D131
pubmed: 31504780
N Engl J Med. 2010 May 20;362(20):1909-19
pubmed: 20484397
Oncotarget. 2017 Jun 17;8(35):58809-58822
pubmed: 28938599
Clin Cancer Res. 2018 Mar 15;24(6):1248-1259
pubmed: 28982688
Front Oncol. 2018 Nov 22;8:548
pubmed: 30524968
Nucleic Acids Res. 2018 Jul 2;46(W1):W503-W509
pubmed: 29800320
Biopreserv Biobank. 2015 Oct;13(5):311-9
pubmed: 26484571
Bioinform Biol Insights. 2020 Jan 31;14:1177932219899051
pubmed: 32076369
Nat Genet. 2013 Oct;45(10):1113-20
pubmed: 24071849
Cell. 2016 Nov 3;167(4):1099-1110.e14
pubmed: 27814507
Front Genet. 2017 Jun 16;8:84
pubmed: 28670325
Cancer Inform. 2016 Sep 20;15:189-98
pubmed: 27688706
PLoS One. 2012;7(4):e35236
pubmed: 22539962
Epigenomics. 2015;7(3):475-86
pubmed: 26077432

Auteurs

Inuk Jung (I)

Department of Computer Science and Engineering, Kyungpook National University, Daegu, South Korea.

Minsu Kim (M)

Computing and Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, United States.

Sungmin Rhee (S)

Department of Computer Science and Engineering, Seoul National University, Seoul, South Korea.

Sangsoo Lim (S)

Interdisciplinary Program in Bioinformatics, Seoul National University, Gwanak-Gu, Seoul, South Korea.

Sun Kim (S)

Computing and Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, United States.
Department of Computer Science and Engineering, Seoul National University, Seoul, South Korea.
Interdisciplinary Program in Bioinformatics, Seoul National University, Gwanak-Gu, Seoul, South Korea.

Classifications MeSH