Identification of Potential Prognostic Biomarker for Predicting Survival in Multiple Myeloma Using Bioinformatics Analysis and Experiments.
RRM2
bioinformatics
cell cycle
multiple myeloma
osalmid
Journal
Frontiers in genetics
ISSN: 1664-8021
Titre abrégé: Front Genet
Pays: Switzerland
ID NLM: 101560621
Informations de publication
Date de publication:
2021
2021
Historique:
received:
08
06
2021
accepted:
11
08
2021
entrez:
27
9
2021
pubmed:
28
9
2021
medline:
28
9
2021
Statut:
epublish
Résumé
Multiple myeloma (MM) is a malignant disease of plasma cells, which remains incurable because of its unclear mechanism and drug resistance. Herein, we aimed to explore new biomarkers and therapeutic targets in MM. After screening differentially expressed genes (DEGs) in GSE6477 and GSE13591 dataset, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of DEGs using DAVID online database. The results indicated that the downregulated DEGs were mainly enriched in the immune-associated biological process. The protein-protein interaction network was constructed by STRING database, on which we performed module analysis and identified key genes. Gene set enrichment analysis (GSEA) and Kaplan-Meier analysis showed that RRM2 could be a novel biomarker in MM diagnosis. We further confirmed that novel RRM2 inhibitor osalmid inhibited MM cell proliferation and triggered cell cycle S phase arrest. Targeting RRM2 was expected to develop new therapeutic strategies for malignant MM.
Identifiants
pubmed: 34567073
doi: 10.3389/fgene.2021.722132
pmc: PMC8461066
doi:
Types de publication
Journal Article
Langues
eng
Pagination
722132Informations de copyright
Copyright © 2021 Zhou, Zhang, Zhang, Shi, Liu and Yao.
Déclaration de conflit d'intérêts
RY was employed by company Xuzhou Ruihu Health Management and Consulting Co., Ltd., China. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Biochem Pharmacol. 2016 Mar 1;103:118-28
pubmed: 26774458
J Exp Clin Cancer Res. 2015 Sep 11;34:102
pubmed: 26362431
Nat Protoc. 2009;4(1):44-57
pubmed: 19131956
Cancer Res. 2007 Apr 1;67(7):2982-9
pubmed: 17409404
Mol Med Rep. 2019 Sep;20(3):2159-2166
pubmed: 31322175
Methods Mol Biol. 2016;1418:93-110
pubmed: 27008011
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Clin Cancer Res. 2011 Aug 15;17(16):5311-21
pubmed: 21724551
Curr Top Med Chem. 2017;17(15):1709-1726
pubmed: 27848897
N Engl J Med. 1999 Nov 18;341(21):1565-71
pubmed: 10564685
J Natl Compr Canc Netw. 2011 Oct;9(10):1146-83
pubmed: 21975914
Biosci Rep. 2018 Sep 19;38(5):
pubmed: 30068698
Blood. 2016 Sep 1;128(9):1226-33
pubmed: 27458004
Int J Cancer. 2015 Mar 1;136(5):E359-86
pubmed: 25220842
Blood. 2008 Mar 1;111(5):2516-20
pubmed: 17975015
Cancer Res. 2007 Jul 1;67(13):6383-91
pubmed: 17616698
J Clin Invest. 2020 Oct 1;130(10):5508-5522
pubmed: 32673292
J Cell Physiol. 2019 Dec;234(12):23785-23797
pubmed: 31215027
Blood. 2011 Nov 3;118(18):4771-9
pubmed: 21860026
Am J Transl Res. 2017 Nov 15;9(11):4994-5002
pubmed: 29218097
Genes Chromosomes Cancer. 2009 Jul;48(7):603-14
pubmed: 19396863
FASEB J. 2020 Apr;34(4):5892-5905
pubmed: 32157720
Nucleic Acids Res. 2006;34(22):e151
pubmed: 17130162
Int J Radiat Oncol Biol Phys. 2020 Dec 1;108(5):1368-1379
pubmed: 32763454
Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368
pubmed: 27924014
Genome Biol. 2007;8(9):R183
pubmed: 17784955
Bioinformatics. 2007 Dec 1;23(23):3251-3
pubmed: 17644558
Nat Struct Mol Biol. 2014 Sep;21(9):803-9
pubmed: 25108355