Production of butyrate and branched-chain amino acid catabolic byproducts by CHO cells in fed-batch culture enhances their specific productivity.


Journal

Biotechnology and bioengineering
ISSN: 1097-0290
Titre abrégé: Biotechnol Bioeng
Pays: United States
ID NLM: 7502021

Informations de publication

Date de publication:
12 2021
Historique:
revised: 10 09 2021
received: 02 02 2021
accepted: 15 09 2021
pubmed: 28 9 2021
medline: 1 3 2022
entrez: 27 9 2021
Statut: ppublish

Résumé

Chinese hamster ovary (CHO) cells in fed-batch cultures produce several metabolic byproducts derived from amino acid catabolism, some of which accumulate to growth inhibitory levels. Controlling the accumulation of these byproducts has been shown to significantly enhance cell proliferation. Interestingly, some of these byproducts have physiological roles that go beyond inhibition of cell proliferation. In this study, we show that, in CHO cell fed-batch cultures, branched-chain amino acid (BCAA) catabolism contributes to the formation of butyrate, a novel byproduct that is also a well-established specific productivity enhancer. We further show that other byproducts of BCAA catabolism, namely isovalerate and isobutyrate, which accumulate in CHO cell fed-batch cultures, also enhance specific productivity. Lastly, we show that the rate of production of these BCAA catabolic byproducts is negatively correlated with glucose uptake and lactate production rates. Thus, limiting glucose supply to suppress glucose uptake and lactate production, as in the case of fed-batch cultures employing high-end pH-controlled delivery of glucose (HiPDOG) technology, significantly enhances BCAA catabolic byproduct accumulation, resulting in higher specific productivities.

Identifiants

pubmed: 34569627
doi: 10.1002/bit.27942
doi:

Substances chimiques

Amino Acids, Branched-Chain 0
Butyrates 0
Culture Media 0
Glucose IY9XDZ35W2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4786-4799

Informations de copyright

© 2021 Wiley Periodicals LLC.

Références

Avello, V., Bethzabeth, T., Vergara, M., Acevedo, C., Berrios, J., Reyes, J. G., & Altamirano, C. (2017). Impact of sodium butyrate and mild hypothermia on metabolic and physiological behaviour of CHO TF 70R cells. Electronic Journal of Biotechnology, 27, 55-62.
Cruz, H. J., Freitas, C. M., Alves, P. M., Moreira, J. L., & Carrondo, M. J. (2000). Effects of ammonia and lactate on growth, metabolism, and productivity of BHK cells. Enzyme and Microbial Technology, 27(1-2), 43-52. https://doi.org/10.1016/s0141-0229(00)00151-4
Dhara, V. G., Naik, H. M., Majewska, N. I., & Betenbaugh, M. J. (2018). Recombinant antibody production in CHO and NS0 cells: Differences and similarities. BioDrugs, 32(6), 571-584. https://doi.org/10.1007/s40259-018-0319-9
Dumont, J., Euwart, D., Mei, B., Estes, S., & Kshirsagar, R. (2016). Human cell lines for biopharmaceutical manufacturing: History, status, and future perspectives. Critical Reviews in Biotechnology, 36(6), 1110-1122. https://doi.org/10.3109/07388551.2015.1084266
Europa, A. F., Gambhir, A., Fu, P. C., & Hu, W. S. (2000). Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotechnology and Bioengineering, 67(1), 25-34. https://doi.org/10.1002/(sici)1097-0290(20000105)67:1%3C25::aid-bit4%3E3.0.co;2-k
Fan, L., Kadura, I., Krebs, L. E., Hatfield, C. C., Shaw, M. M., & Frye, C. C. (2012). Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Biotechnology and Bioengineering, 109(4), 1007-1015. https://doi.org/10.1002/bit.24365
Gagnon, M., Hiller, G., Luan, Y. T., Kittredge, A., DeFelice, J., & Drapeau, D. (2011). High-end pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed-batch cultures. Biotechnology and Bioengineering, 108(6), 1328-1337. https://doi.org/10.1002/bit.23072
Gagnon, M., Nagre, S., Wang, W., Coffman, J., & Hiller, G. W. (2019). Novel, linked bioreactor system for continuous production of biologics. Biotechnology and Bioengineering, 116(8), 1946-1958. https://doi.org/10.1002/bit.26985
Hefzi, H., Ang, K. S., Hanscho, M., Bordbar, A., Ruckerbauer, D., Lakshmanan, M., Orellana, C. A., Baycin-Hizal, D., Huang, Y., Ley, D., Martinez, V. S., Kyriakopoulos, S., Jiménez, N. E., Zielinski, D. C., Quek, L. E., Wulff, T., Arnsdorf, J., Li, S., Lee, J. S., … Lewis, N. E. (2016). A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst, 3(5), 434-443. https://doi.org/10.1016/j.cels.2016.10.020
Hiller, G. W., Ovalle, A. M., Gagnon, M. P., Curran, M. L., & Wang, W. (2017). Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures. Biotechnology and Bioengineering, 114(7), 1438-1447. https://doi.org/10.1002/bit.26259
Jiang, Z., & Sharfstein, S. T. (2008). Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Biotechnology and Bioengineering, 100(1), 189-194. https://doi.org/10.1002/bit.21726
Kantardjieff, A., Jacob, N. M., Yee, J. C., Epstein, E., Kok, Y. J., Philp, R., Betenbaugh, M., & Hu, W. S. (2010). Transcriptome and proteome analysis of Chinese hamster ovary cells under low temperature and butyrate treatment. Journal of Biotechnology, 145(2), 143-159. https://doi.org/10.1016/j.jbiotec.2009.09.008
Kim, H. J., & Bae, S. C. (2011). Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs. American Journal of Translational Research, 3(2), 166-179.
Kim, J. Y., Kim, Y. G., & Lee, G. M. (2012). CHO cells in biotechnology for production of recombinant proteins: Current state and further potential. Applied Microbiology and Biotechnology, 93(3), 917-930. https://doi.org/10.1007/s00253-011-3758-5
Klausing, S., Kramer, O., & Noll, T. (2011). Bioreactor cultivation of CHO DP-12 cells under sodium butyrate treatment: Comparative transcriptome analysis with CHO cDNA microarrays. BMC Proceedings, 5(Suppl 8), P98. https://doi.org/10.1186/1753-6561-5-S8-P98
Lao, M. S., & Toth, D. (1997). Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture. Biotechnology Progress, 13(5), 688-691. https://doi.org/10.1021/bp9602360
Le, H., Kabbur, S., Pollastrini, L., Sun, Z., Mills, K., Johnson, K., Karypis, G., & Hu, W. S. (2012). Multivariate analysis of cell culture bioprocess data: Lactate consumption as process indicator. Journal of Biotechnology, 162(2-3), 210-223. https://doi.org/10.1016/j.jbiotec.2012.08.021
McBain, J. A., Eastman, A., Nobel, C. S., & Mueller, G. C. (1997). Apoptotic death in adenocarcinoma cell lines induced by butyrate and other histone deacetylase inhibitors. Biochemical Pharmacology, 53(9), 1357-1368. https://doi.org/10.1016/s0006-2952(96)00904-5
Mulukutla, B. C., Gramer, M., & Hu, W. S. (2012). On metabolic shift to lactate consumption in fed-batch culture of mammalian cells. Metabolic Engineering, 14(2), 138-149. https://doi.org/10.1016/j.ymben.2011.12.006
Mulukutla, B. C., Kale, J., Kalomeris, T., Jacobs, M., & Hiller, G. W. (2017). Identification and control of novel growth inhibitors in fed-batch cultures of Chinese hamster ovary cells. Biotechnology and Bioengineering, 114(8), 1779-1790. https://doi.org/10.1002/bit.26313
Mulukutla, B. C., Mitchell, J., Geoffroy, P., Harrington, C., Krishnan, M., Kalomeris, T., Morris, C., Zhang, L., Pegman, P., & Hiller, G. W. (2019). Metabolic engineering of Chinese hamster ovary cells towards reduced biosynthesis and accumulation of novel growth inhibitors in fed-batch cultures. Metabolic Engineering, 54, 54-68. https://doi.org/10.1016/j.ymben.2019.03.001
Mulukutla, B. C., Yongky, A., Grimm, S., Daoutidis, P., & Hu, W. S. (2015). Multiplicity of steady states in glycolysis and shift of metabolic state in cultured mammalian cells. PLoS One, 10(3), e0121561. https://doi.org/10.1371/journal.pone.0121561
O'Brien, C. M., Mulukutla, B. C., Mashek, D. G., & Hu, W. S. (2020). Regulation of metabolic homeostasis in cell culture bioprocesses. Trends in Biotechnology, 38, 1113-1127. https://doi.org/10.1016/j.tibtech.2020.02.005
Pajak, B., Siwiak, E., Sołtyka, M., Priebe, A., Zieliński, R., Fokt, I., Ziemniak, M., Jaśkiewicz, A., Borowski, R., Domoradzki, T., & Priebe, W. (2019). 2-deoxy-d-glucose and its analogs: From diagnostic to therapeutic agents. International Journal of Molecular Sciences, 21(1):234. https://doi.org/10.3390/ijms21010234
Parker, P. J., & Randle, P. J. (1978). Branched chain 2-oxo-acid dehydrogenase complex of rat liver. FEBS Letters, 90(1), 183-186. https://doi.org/10.1016/0014-5793(78)80325-1
Pereira, S., Kildegaard, H. F., & Andersen, M. R. (2018). Impact of CHO metabolism on cell growth and protein production: An overview of toxic and inhibiting metabolites and nutrients. Biotechnology Journal, 13(3), e1700499. https://doi.org/10.1002/biot.201700499
Sumit, M., Dolatshahi, S., Chu, A. A., Cote, K., Scarcelli, J. J., Marshall, J. K., Cornell, R. J., Weiss, R., Lauffenburger, D. A., Mulukutla, B. C., & Figueroa B, Jr. (2019). Dissecting N-glycosylation dynamics in Chinese hamster ovary cells fed-batch cultures using time course omics analyses. iScience, 12, 102-120. https://doi.org/10.1016/j.isci.2019.01.006
Tillander, V., Alexson, S. E. H., & Cohen, D. E. (2017). Deactivating fatty acids: Acyl-CoA thioesterase-mediated control of lipid metabolism. Trends in Endocrinology and Metabolism, 28(7), 473-484. https://doi.org/10.1016/j.tem.2017.03.001
Trefely, S., Lovell, C. D., Snyder, N. W., & Wellen, K. E. (2020). Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Molecular Metabolism, 38, 100941. https://doi.org/10.1016/j.molmet.2020.01.005
Walsh, G. (2018). Biopharmaceutical benchmarks 2018. Nature Biotechnology, 36(12), 1136-1145. https://doi.org/10.1038/nbt.4305
Yang, M., & Butler, M. (2000). Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnology and Bioengineering, 68(4), 370-380. https://doi.org/10.1002/(sici)1097-0290(20000520)68:4%3C370::aid-bit2%3E3.0.co;2-k
Yang, W. C., Lu, J., Nguyen, N. B., Zhang, A., Healy, N. V., Kshirsagar, R., Ryll, T., & Huang, Y. M. (2014). Addition of valproic acid to CHO cell fed-batch cultures improves monoclonal antibody titers. Molecular Biotechnology, 56(5), 421-428. https://doi.org/10.1007/s12033-013-9725-x
Yee, J. C., de Leon Gatti, M., Philp, R. J., Yap, M., & Hu, W. S. (2008). Genomic and proteomic exploration of CHO and hybridoma cells under sodium butyrate treatment. Biotechnology and Bioengineering, 99(5), 1186-1204. https://doi.org/10.1002/bit.21665

Auteurs

Cameron Harrington (C)

Cell Culture Process Development, Pfizer Inc, Andover, Massachusetts, USA.

Michaela Jacobs (M)

Cell Culture Process Development, Pfizer Inc, Andover, Massachusetts, USA.

Quentin Bethune (Q)

Cell Culture Process Development, Pfizer Inc, Andover, Massachusetts, USA.

Taylor Kalomeris (T)

Cell Culture Process Development, Pfizer Inc, Andover, Massachusetts, USA.

Gregory W Hiller (GW)

Cell Culture Process Development, Pfizer Inc, Andover, Massachusetts, USA.

Bhanu Chandra Mulukutla (BC)

Cell Culture Process Development, Pfizer Inc, Andover, Massachusetts, USA.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH