Linking spatial self-organization to community assembly and biodiversity.
community structure
ecology
plant communities
response to climate change
trait-based approach
vegetation pattern formation
Journal
eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614
Informations de publication
Date de publication:
27 09 2021
27 09 2021
Historique:
received:
13
09
2021
accepted:
19
09
2021
pubmed:
28
9
2021
medline:
23
11
2021
entrez:
27
9
2021
Statut:
epublish
Résumé
Temporal shifts to drier climates impose environmental stresses on plant communities that may result in community reassembly and threatened ecosystem services, but also may trigger self-organization in spatial patterns of biota and resources, which act to relax these stresses. The complex relationships between these counteracting processes - community reassembly and spatial self-organization - have hardly been studied. Using a spatio-temporal model of dryland plant communities and a trait-based approach, we study the response of such communities to increasing water-deficit stress. We first show that spatial patterning acts to reverse shifts from fast-growing species to stress-tolerant species, as well as to reverse functional-diversity loss. We then show that spatial self-organization buffers the impact of further stress on community structure. Finally, we identify multistability ranges of uniform and patterned community states and use them to propose forms of non-uniform ecosystem management that integrate the need for provisioning ecosystem services with the need to preserve community structure.
Identifiants
pubmed: 34570698
doi: 10.7554/eLife.73819
pii: 73819
pmc: PMC8497052
doi:
pii:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2021, Bera et al.
Déclaration de conflit d'intérêts
BB, OT, JB, EM No competing interests declared
Références
Nat Commun. 2019 Jun 11;10(1):2555
pubmed: 31186418
Sci Adv. 2017 Aug 02;3(8):e1603262
pubmed: 28782035
Bull Math Biol. 2014 Nov;76(11):2866-83
pubmed: 25338554
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11248-53
pubmed: 18678893
Annu Rev Entomol. 2017 Jan 31;62:359-377
pubmed: 28141964
Sci Adv. 2021 Feb 5;7(6):
pubmed: 33547078
Sci Rep. 2019 Dec 20;9(1):19577
pubmed: 31862940
Ecol Lett. 2019 Sep;22(9):1428-1438
pubmed: 31243848
Philos Trans R Soc Lond B Biol Sci. 2011 Aug 27;366(1576):2403-13
pubmed: 21768155
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022701
pubmed: 25353503
Phys Rev Lett. 2004 Aug 27;93(9):098105
pubmed: 15447146
Ecol Lett. 2020 Mar;23(3):414-429
pubmed: 31912954
Phys Life Rev. 2021 Sep;38:1-24
pubmed: 34334324
Phys Rev Lett. 2001 Nov 5;87(19):198101
pubmed: 11690457
J Theor Biol. 2012 May 7;300:48-56
pubmed: 22281518
Proc Biol Sci. 2019 Apr 10;286(1900):20182859
pubmed: 30966990
Theor Popul Biol. 2007 Sep;72(2):214-30
pubmed: 17628624
Ecology. 2018 Apr;99(4):832-847
pubmed: 29437225
Phys Rev E. 2020 May;101(5-1):052214
pubmed: 32575306
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4464-4470
pubmed: 32071212
Am Nat. 2002 Oct;160(4):524-30
pubmed: 18707527
J Math Biol. 2016 Jul;73(1):63-90
pubmed: 26454759
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12327-31
pubmed: 26362787
Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11641-5
pubmed: 19571002
Trends Ecol Evol. 1994 May;9(5):191-3
pubmed: 21236818
Philos Trans A Math Phys Eng Sci. 2013 Nov 04;371(2004):20120358
pubmed: 24191112
Science. 2004 Sep 24;305(5692):1926-9
pubmed: 15448261
Planta. 2003 Aug;217(4):529-39
pubmed: 12811559
Math Biosci. 2016 Jan;271:1-18
pubmed: 26529391
Trends Ecol Evol. 2008 Mar;23(3):169-75
pubmed: 18255188
Monogr Popul Biol. 1982;17:1-296
pubmed: 7162524
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3551-6
pubmed: 26976567
Sci Rep. 2020 Mar 2;10(1):3782
pubmed: 32123214
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):11256-11261
pubmed: 30322906