Co-culture of type I and type II pneumocytes as a model of alveolar epithelium.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2021
2021
Historique:
received:
09
03
2021
accepted:
13
07
2021
entrez:
27
9
2021
pubmed:
28
9
2021
medline:
16
11
2021
Statut:
epublish
Résumé
The epithelial tissues of the distal lung are continuously exposed to inhaled air, and are of research interest in studying respiratory exposure to both hazardous and therapeutic materials. Pharmaco-toxicological research depends on the development of sophisticated models of the alveolar epithelium, which better represent the different cell types present in the native lung and interactions between them. We developed an air-liquid interface (ALI) model of the alveolar epithelium which incorporates cell lines which bear features of type I (hAELVi) and type II (NCI-H441) epithelial cells. We compared morphology of single cells and the structure of cell layers of the two lines using light and electron microscopy. Working both in monotypic cultures and cocultures, we measured barrier function by trans-epithelial electrical resistance (TEER), and demonstrated that barrier properties can be maintained for 30 days. We created a mathematical model of TEER development over time based on these data in order to make inferences about the interactions occurring in these culture systems. We assessed expression of a panel of relevant genes that play important roles in barrier function and differentiation. The coculture model was observed to form a stable barrier akin to that seen in hAELVi, while expressing surfactant protein C, and having a profile of expression of claudins and aquaporins appropriate for the distal lung. We described cavities which arise within stratified cell layers in NCI-H441 and cocultured cells, and present evidence that these cavities represent an aberrant apical surface. In summary, our results support the coculture of these two cell lines to produce a model which better represents the breadth of functions seen in native alveolar epithelium.
Identifiants
pubmed: 34570783
doi: 10.1371/journal.pone.0248798
pii: PONE-D-21-07711
pmc: PMC8475999
doi:
Substances chimiques
ABCA3 protein, human
0
ATP-Binding Cassette Transporters
0
Claudins
0
Pulmonary Surfactants
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0248798Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Pflugers Arch. 2019 Apr;471(4):519-532
pubmed: 30397774
ALTEX. 2016;33(3):251-60
pubmed: 26985677
Exp Cell Res. 2011 Aug 1;317(13):1935-46
pubmed: 21641901
Am J Respir Cell Mol Biol. 2015 Jul;53(1):113-24
pubmed: 25474582
Nat Commun. 2015 Apr 13;6:6727
pubmed: 25865356
Am J Physiol Lung Cell Mol Physiol. 2010 Dec;299(6):L724-34
pubmed: 20833776
Cell Tissue Res. 1999 Jan;295(1):111-20
pubmed: 9931357
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2407-2412
pubmed: 29463737
J Clin Invest. 2013 Jul;123(7):3025-36
pubmed: 23921127
Mol Pharm. 2014 Mar 3;11(3):995-1006
pubmed: 24524365
J Clin Invest. 2018 Mar 1;128(3):970-984
pubmed: 29400695
Tissue Eng Part C Methods. 2018 Sep;24(9):495-503
pubmed: 30101647
PLoS One. 2016 Oct 25;11(10):e0165225
pubmed: 27780255
Am J Physiol Lung Cell Mol Physiol. 2017 Jun 1;312(6):L797-L811
pubmed: 28283476
PLoS One. 2012;7(12):e51575
pubmed: 23272120
J Histochem Cytochem. 2010 Oct;58(10):891-901
pubmed: 20566753
J Biol Chem. 2001 Dec 28;276(52):48619-22
pubmed: 11689550
Oncol Lett. 2010 May;1(3):501-505
pubmed: 22966332
FASEB J. 2020 Sep;34(9):12785-12804
pubmed: 32744386
FEBS Lett. 2010 Oct 22;584(20):4306-12
pubmed: 20863830
Biochem Biophys Res Commun. 1999 Sep 7;262(3):744-51
pubmed: 10471396
BMC Biol. 2016 Jul 13;14:59
pubmed: 27412481
Mol Biol Cell. 2019 Jun 1;30(12):1406-1424
pubmed: 30943107
Am J Respir Cell Mol Biol. 2011 Jan;44(1):53-65
pubmed: 20139350
ALTEX. 2017;35(2):211-222
pubmed: 29169185
Cell Struct Funct. 1997 Dec;22(6):603-14
pubmed: 9591052
J Biomed Biotechnol. 2011;2011:174306
pubmed: 22131798
Biophys J. 2010 Apr 21;98(8):1703-11
pubmed: 20409492
Am Rev Respir Dis. 1982 Aug;126(2):332-7
pubmed: 7103258
J Cell Biol. 1998 Jun 29;141(7):1539-50
pubmed: 9647647
Am J Respir Cell Mol Biol. 1999 Mar;20(3):500-10
pubmed: 10030849
Elife. 2018 Sep 04;7:
pubmed: 30178747
Cancer Res. 1986 Nov;46(11):6011-2
pubmed: 3019544
Lab Invest. 2004 Jun;84(6):736-52
pubmed: 15077120
Adv Drug Deliv Rev. 2020;161-162:63-74
pubmed: 32763274
Am J Respir Cell Mol Biol. 2001 Mar;24(3):224-34
pubmed: 11245621
Ann N Y Acad Sci. 2012 Jun;1257:175-83
pubmed: 22671604
J Histochem Cytochem. 2006 Jun;54(6):665-72
pubmed: 16714422
Development. 2018 May 11;145(9):
pubmed: 29752282
J Cell Mol Med. 2009 Jul;13(7):1228-37
pubmed: 19382909
Acta Biomater. 2019 Jun;91:235-247
pubmed: 31004840
Front Mol Biosci. 2018 May 03;5:43
pubmed: 29774214
Cell. 2017 Sep 7;170(6):1149-1163.e12
pubmed: 28886383
PLoS One. 2018 Dec 14;13(12):e0209095
pubmed: 30550606
Science. 2018 Mar 9;359(6380):1118-1123
pubmed: 29420258