The Effects of Simulated Microgravity on Macrophage Phenotype.
alternatively activated
classically activated
immune
macrophage
microgravity
phenotype
pro-inflammation
Journal
Biomedicines
ISSN: 2227-9059
Titre abrégé: Biomedicines
Pays: Switzerland
ID NLM: 101691304
Informations de publication
Date de publication:
12 Sep 2021
12 Sep 2021
Historique:
received:
11
08
2021
revised:
07
09
2021
accepted:
09
09
2021
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
29
9
2021
Statut:
epublish
Résumé
The effects of spaceflight, including prolonged exposure to microgravity, can have significant effects on the immune system and human health. Altered immune cell function can lead to adverse health events, though precisely how and to what extent a microgravity environment impacts these cells remains uncertain. Macrophages, a key immune cell, effect the inflammatory response as well as tissue remodeling and repair. Specifically, macrophage function can be dictated by phenotype that can exist between spectrums of M0 macrophage: the classically activated, pro-inflammatory M1, and the alternatively activated, pro-healing M2 phenotypes. This work assesses the effects of simulated microgravity via clinorotation on M0, M1, and M2 macrophage phenotypes. We focus on phenotypic, inflammatory, and angiogenic gene and protein expression. Our results show that across all three phenotypes, microgravity results in a decrease in TNF-α expression and an increase in IL-12 and VEGF expression. IL-10 was also significantly increased in M1 and M2, but not M0 macrophages. The phenotypic cytokine expression profiles observed may be related to specific gravisensitive signal transduction pathways previously implicated in microgravity regulation of macrophage gene and protein expression. Our results highlight the far-reaching effects that simulated microgravity has on macrophage function and provides insight into macrophage phenotypic function in microgravity.
Identifiants
pubmed: 34572391
pii: biomedicines9091205
doi: 10.3390/biomedicines9091205
pmc: PMC8472625
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : University of Central Florida and University of Florida Space Research Initiative
ID : 00098313
Déclaration de conflit d'intérêts
The authors declare no conflict of interest
Références
Nat Rev Immunol. 2010 Mar;10(3):170-81
pubmed: 20154735
FASEB J. 2011 Sep;25(9):2858-64
pubmed: 21880668
J Immunol. 2014 Jan 1;192(1):427-36
pubmed: 24337373
J Cell Sci. 2003 Feb 15;116(Pt 4):665-74
pubmed: 12538767
Virol Sin. 2015 Jun;30(3):174-89
pubmed: 26122641
Am J Physiol Renal Physiol. 2001 Jul;281(1):F12-25
pubmed: 11399642
Exp Cell Res. 1995 Jan;216(1):160-8
pubmed: 7813616
Sci Adv. 2020 May 01;6(18):eaay6391
pubmed: 32494664
Cell Immunol. 2016 Dec;310:42-52
pubmed: 27502363
Mediators Inflamm. 2015;2015:816460
pubmed: 26089604
Protoplasma. 2006 Dec;229(2-4):243-9
pubmed: 17180508
PLoS One. 2017 Nov 20;12(11):e0188317
pubmed: 29155869
Life (Basel). 2021 Feb 02;11(2):
pubmed: 33540536
Sci Rep. 2018 Sep 24;8(1):14239
pubmed: 30250055
Int J Mol Sci. 2021 Feb 26;22(5):
pubmed: 33652750
F1000Prime Rep. 2014 Mar 03;6:13
pubmed: 24669294
Expert Rev Proteomics. 2011 Feb;8(1):13-27
pubmed: 21329425
NPJ Microgravity. 2021 Mar 31;7(1):13
pubmed: 33790288
NPJ Microgravity. 2017 Apr 12;3:11
pubmed: 28649633
Int J Mol Med. 2015 Aug;36(2):449-54
pubmed: 26035689
NPJ Microgravity. 2017 Feb 28;3:10
pubmed: 28649632
Cytoskeleton (Hoboken). 2011 Feb;68(2):125-37
pubmed: 21246756
Aviat Space Environ Med. 2011 Sep;82(9):857-62
pubmed: 21888268
Astrobiology. 2010 Jun;10(5):463-73
pubmed: 20624055
Inflamm Res. 2015 May;64(5):303-11
pubmed: 25804385
Biomaterials. 2014 May;35(15):4477-88
pubmed: 24589361
Eur J Clin Invest. 2005 Sep;35(9):591-6
pubmed: 16128866
J Immunol. 1999 Dec 15;163(12):6403-12
pubmed: 10586030
Inflamm Res. 2014 Jan;63(1):91-8
pubmed: 24196691
Ann Biomed Eng. 2019 Feb;47(2):354-365
pubmed: 30535815
Int J Immunopathol Pharmacol. 2006 Apr-Jun;19(2):279-86
pubmed: 16831295
J Appl Physiol (1985). 2009 Jun;106(6):1935-42
pubmed: 19342437
Front Cell Dev Biol. 2020 Feb 21;8:96
pubmed: 32154251
NPJ Microgravity. 2015 Sep 03;1:15013
pubmed: 28725716
Free Radic Biol Med. 2017 Sep;110:432-443
pubmed: 28647611
Am J Respir Cell Mol Biol. 2015 Nov;53(5):676-88
pubmed: 25870903
Int J Mol Sci. 2019 May 15;20(10):
pubmed: 31096581
Immunology. 2003 Jul;109(3):415-25
pubmed: 12807488
Adv Space Res. 1999;23(12):1955-64
pubmed: 11710377
J Leukoc Biol. 2019 Aug;106(2):345-358
pubmed: 30576000
Int J Mol Med. 2016 Aug;38(2):666-74
pubmed: 27353313
Cell Mol Immunol. 2021 Jun;18(6):1489-1502
pubmed: 31900461
PLoS One. 2018 Jun 11;13(6):e0198943
pubmed: 29889899
Immunity. 2014 Jul 17;41(1):14-20
pubmed: 25035950
Front Microbiol. 2019 Feb 07;10:16
pubmed: 30792698
J Leukoc Biol. 1992 Jul;52(1):104-10
pubmed: 1640164
Cell Metab. 2018 Nov 6;28(5):750-763.e6
pubmed: 30122557
Int Immunopharmacol. 2017 Sep;50:319-329
pubmed: 28743081
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):E2384-93
pubmed: 24912173
Thromb Haemost. 2001 Jan;85(1):171-6
pubmed: 11204570
Int J Mol Sci. 2019 Jan 20;20(2):
pubmed: 30669540
Fundam Clin Pharmacol. 2020 Dec;34(6):721-735
pubmed: 32479684
Immunobiology. 2010 Sep-Oct;215(9-10):796-803
pubmed: 20692534
Clin Vaccine Immunol. 2008 Oct;15(10):1523-8
pubmed: 18768671
J Leukoc Biol. 2011 Apr;89(4):557-63
pubmed: 21248152
Int J Radiat Biol. 2013 Jan;89(1):26-35
pubmed: 22852758
J Immunol. 2005 Apr 1;174(7):4178-84
pubmed: 15778378
Br J Pharmacol. 2009 Oct;158(3):638-51
pubmed: 19764983
PLoS One. 2017 Apr 18;12(4):e0175599
pubmed: 28419128
Plant Sci. 2016 Feb;243:115-9
pubmed: 26795156
PLoS One. 2013 Sep 30;8(9):e75147
pubmed: 24098682
Sci Rep. 2019 Sep 25;9(1):13825
pubmed: 31554863
Microbiol Mol Biol Rev. 2004 Jun;68(2):320-44
pubmed: 15187187
Front Immunol. 2019 Apr 15;10:792
pubmed: 31037072
J Neuroinflammation. 2011 May 26;8:58
pubmed: 21615896
Clin Exp Immunol. 2005 Dec;142(3):481-9
pubmed: 16297160
Stem Cells Dev. 2016 Feb 15;25(4):329-36
pubmed: 26649474