Dry-Cured Ham-Derived Peptide (Asp-Leu-Glu-Glu) Exerts Cytoprotective Capacity in Human Intestinal Epithelial Caco-2 Cells.
Asp–Leu–Glu–Glu
Nfr2/Keap1
antioxidant enzymes
bioactive peptide
dry-cured ham
Journal
Antioxidants (Basel, Switzerland)
ISSN: 2076-3921
Titre abrégé: Antioxidants (Basel)
Pays: Switzerland
ID NLM: 101668981
Informations de publication
Date de publication:
26 Aug 2021
26 Aug 2021
Historique:
received:
02
07
2021
revised:
18
08
2021
accepted:
23
08
2021
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
29
9
2021
Statut:
epublish
Résumé
Dry-cured hams are well-known and highly appreciated products in the Mediterranean and China. The long-term fermentation endows dry-cured hams with a unique flavor and quality. Our previous study has identified Asp-Leu-Glu-Glu (DLEE) from dry-cured Xuanwei ham with remarkable antioxidant capacity. In the current study, the Caco-2 cells were cultured in vitro and treated with different doses of DLEE. The cellular reactive oxygen species (ROS) level and antioxidant enzyme activities were then determined to investigate the intracellular protection effect of DLEE. According to the results, the cellular ROS level was reduced, whereas the antioxidant enzyme activities of glutathione reductase, catalase, and glutathione peroxidase were improved following DLEE treatment. The DLEE treatment also increased the Nrf2 expression, along with downregulating the Keap1 expression. Thus, the dry-cured ham-derived peptide DLEE exhibited excellent bioactive capacity by reducing the ROS level and regulating the antioxidant enzyme activities. In addition, Nrf2/Keap1 was shown to be the main signaling pathway underlying DLEE-induced antioxidant activities in Caco-2 cells.
Identifiants
pubmed: 34572986
pii: antiox10091354
doi: 10.3390/antiox10091354
pmc: PMC8469342
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : National Natural Science Foundation of China
ID : 32001720
Références
Ann N Y Acad Sci. 2008 Dec;1147:37-52
pubmed: 19076429
Arch Toxicol. 2011 Apr;85(4):241-72
pubmed: 21365312
J Agric Food Chem. 2015 Nov 11;63(44):9888-98
pubmed: 26485361
Food Chem. 2012 May 1;132(1):104-11
pubmed: 26434269
Food Chem. 2015 Aug 1;180:194-202
pubmed: 25766818
Toxicol In Vitro. 2013 Mar;27(2):954-63
pubmed: 23357416
Life Sci. 2006 Oct 19;79(21):2056-68
pubmed: 16857214
Food Res Int. 2016 Dec;90:33-41
pubmed: 29195889
Food Chem. 2016 Mar 1;194:951-8
pubmed: 26471639
J Pineal Res. 2004 Jan;36(1):1-9
pubmed: 14675124
Food Chem. 2020 Aug 15;321:126689
pubmed: 32259732
Curr Pharm Des. 2004;10(8):879-91
pubmed: 15032691
Food Chem. 2018 Nov 15;266:420-426
pubmed: 30381207
J Food Sci Technol. 2015 Oct;52(10):6194-205
pubmed: 26396366
Antioxidants (Basel). 2016 Sep 20;5(3):
pubmed: 27657142
Appl Environ Microbiol. 2012 Feb;78(4):1087-96
pubmed: 22156436
J Agric Food Chem. 2005 Feb 9;53(3):581-7
pubmed: 15686405
Biochemistry (Mosc). 2011 Apr;76(4):407-22
pubmed: 21585316
Food Chem. 2016 Dec 15;213:470-477
pubmed: 27451206
J Agric Food Chem. 2017 Feb 1;65(4):810-817
pubmed: 28102669
Food Chem. 2013 Jun 1;138(2-3):1282-8
pubmed: 23411244
Life Sci. 2005 Sep 9;77(17):2166-78
pubmed: 15916780