Ageing and the Ipsilateral M1 BOLD Response: A Connectivity Study.
DCM
ageing
aging
connectivity
fMRI
ipsilateral
motor cortex
negative BOLD
Journal
Brain sciences
ISSN: 2076-3425
Titre abrégé: Brain Sci
Pays: Switzerland
ID NLM: 101598646
Informations de publication
Date de publication:
26 Aug 2021
26 Aug 2021
Historique:
received:
27
07
2021
revised:
19
08
2021
accepted:
23
08
2021
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
29
9
2021
Statut:
epublish
Résumé
Young people exhibit a negative BOLD response in ipsilateral primary motor cortex (M1) when making unilateral movements, such as button presses. This negative BOLD response becomes more positive as people age. In this study, we investigated why this occurs, in terms of the underlying effective connectivity and haemodynamics. We applied dynamic causal modeling (DCM) to task fMRI data from 635 participants aged 18-88 from the Cam-CAN dataset, who performed a cued button pressing task with their right hand. We found that connectivity from contralateral supplementary motor area (SMA) and dorsal premotor cortex (PMd) to ipsilateral M1 became more positive with age, explaining 44% of the variability across people in ipsilateral M1 responses. In contrast, connectivity from contralateral M1 to ipsilateral M1 was weaker and did not correlate with individual differences in rM1 BOLD. Neurovascular and haemodynamic parameters in the model were not able to explain the age-related shift to positive BOLD. Our results add to a body of evidence implicating neural, rather than vascular factors as the predominant cause of negative BOLD-while emphasising the importance of inter-hemispheric connectivity. This study provides a foundation for investigating the clinical and lifestyle factors that determine the sign and amplitude of the M1 BOLD response in ageing, which could serve as a proxy for neural and vascular health, via the underlying neurovascular mechanisms.
Identifiants
pubmed: 34573152
pii: brainsci11091130
doi: 10.3390/brainsci11091130
pmc: PMC8470146
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/H008217/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00005/8
Pays : United Kingdom
Organisme : Wellcome
ID : 203147/Z/16/Z
Références
J Neurophysiol. 2005 Mar;93(3):1209-22
pubmed: 15525809
J Physiol. 1992;453:525-46
pubmed: 1464843
Front Neurosci. 2017 Nov 10;11:616
pubmed: 29249925
Neuroimage. 2019 Oct 15;200:174-190
pubmed: 31226497
PLoS One. 2013 Jul 04;8(7):e68910
pubmed: 23861951
Electroencephalogr Clin Neurophysiol. 1998 Feb;109(1):50-62
pubmed: 11003064
Neuroimage. 2017 Jan;144(Pt B):262-269
pubmed: 26375206
Neurology. 2002 Feb 26;58(4):630-5
pubmed: 11865144
Biol Cybern. 2005 Feb;92(2):101-9
pubmed: 15685391
Neuroimage. 2014 Jul 1;94:263-274
pubmed: 24632092
Neurosci Biobehav Rev. 2020 Jun;113:39-50
pubmed: 32142801
Brain. 1998 Dec;121 ( Pt 12):2271-99
pubmed: 9874480
J Physiol. 2002 Aug 15;543(Pt 1):307-16
pubmed: 12181301
Neuroimage Clin. 2018 Feb 03;18:443-455
pubmed: 29552486
Neuroimage. 2006 Jul 15;31(4):1453-74
pubmed: 16571375
Neurobiol Aging. 2008 Sep;29(9):1434-46
pubmed: 17566608
J Neurosci. 2018 Aug 15;38(33):7303-7313
pubmed: 30037829
J Neurosci. 2018 Nov 21;38(47):10042-10056
pubmed: 30301759
J Comp Neurol. 1979 Nov 1;188(1):137-45
pubmed: 115906
Neuroimage. 2014 Oct 1;99:451-60
pubmed: 24862079
Neuroimage. 2007 Jun;36(2):269-76
pubmed: 17113313
Prog Neurobiol. 2021 Apr 27;:102055
pubmed: 33930519
Genome Biol. 2020 Mar 9;21(1):61
pubmed: 32151270
Neuroimage. 2003 Aug;19(4):1273-302
pubmed: 12948688
NMR Biomed. 2011 Jan;24(1):25-34
pubmed: 21259367
Cortex. 2020 Sep;130:127-141
pubmed: 32652340
Neuroimage. 2012 Feb 15;59(4):3398-405
pubmed: 22119651
Neuroscience. 2021 Jan 1;452:111-125
pubmed: 33197497
Neuroimage. 2016 Jan 15;125:556-570
pubmed: 26484827
Hum Brain Mapp. 2015 Jun;36(6):2248-69
pubmed: 25727740
Hum Brain Mapp. 2020 Feb 15;41(3):640-655
pubmed: 31617272
J Neurophysiol. 1962 Mar;25:198-208
pubmed: 13862744
Exp Brain Res. 2004 Jan;154(1):1-10
pubmed: 14579004
Neuroimage Clin. 2014 Nov 18;7:82-6
pubmed: 25610769
Neuron. 2002 Dec 19;36(6):1195-210
pubmed: 12495632
Neuroimage. 2002 Dec;17(4):1720-8
pubmed: 12498746
Exp Brain Res. 1994;102(2):227-43
pubmed: 7705502
Philos Trans A Math Phys Eng Sci. 2019 Dec 16;377(2160):20190048
pubmed: 31656140
Neuroimage. 1995 Sep;2(3):173-81
pubmed: 9343600
Nat Neurosci. 2006 Apr;9(4):569-77
pubmed: 16547508
Neuroimage. 2009 Oct 15;48(1):150-65
pubmed: 19481163
Neuroimage. 2020 Aug 1;216:116734
pubmed: 32179105
Cereb Cortex. 2007 Feb;17(2):353-62
pubmed: 16525129
Neuroimage. 2009 Oct 1;47(4):1628-38
pubmed: 19523523
BMC Neurol. 2014 Oct 14;14:204
pubmed: 25412575
Cereb Cortex. 2013 Jun;23(6):1362-77
pubmed: 22610393
Brain Struct Funct. 2019 Jan;224(1):205-217
pubmed: 30302538
Psychol Aging. 2002 Mar;17(1):85-100
pubmed: 11931290
Neuroimage. 2007 Jan 1;34(1):220-34
pubmed: 17055746
Nat Rev Neurosci. 2018 Nov;19(11):701-710
pubmed: 30305711
Clin Neurophysiol. 2007 Feb;118(2):308-16
pubmed: 17174150
J Comp Neurol. 2002 Jan 28;443(1):71-85
pubmed: 11793348
Neuroimage. 2008 Apr 1;40(2):828-837
pubmed: 18234512
Neuroimage. 2007 Nov 15;38(3):387-401
pubmed: 17884583
Brain Struct Funct. 2017 Apr;222(3):1243-1252
pubmed: 27469272
J Neurosci. 2008 May 28;28(22):5631-40
pubmed: 18509024
Trends Neurosci. 2019 Nov;42(11):825-839
pubmed: 31514976
Neuroimage. 2006 Sep;32(3):1345-54
pubmed: 16798017
Cereb Cortex. 2008 May;18(5):1201-9
pubmed: 17925295