Detection and Visualization of Heterozygosity-Rich Regions and Runs of Homozygosity in Worldwide Sheep Populations.

Ovis aries adaptation artificial selection genetic diversity heterozygosity-enriched regions runs of heterozygosity

Journal

Animals : an open access journal from MDPI
ISSN: 2076-2615
Titre abrégé: Animals (Basel)
Pays: Switzerland
ID NLM: 101635614

Informations de publication

Date de publication:
15 Sep 2021
Historique:
received: 23 08 2021
revised: 11 09 2021
accepted: 13 09 2021
entrez: 28 9 2021
pubmed: 29 9 2021
medline: 29 9 2021
Statut: epublish

Résumé

In this study, we chose 17 worldwide sheep populations of eight breeds, which were intensively selected for different purposes (meat, milk, or wool), or locally-adapted breeds, in order to identify and characterize factors impacting the detection of runs of homozygosity (ROH) and heterozygosity-rich regions (HRRs) in sheep. We also applied a business intelligence (BI) tool to integrate and visualize outputs from complementary analyses. We observed a prevalence of short ROH, and a clear distinction between the ROH profiles across populations. The visualizations showed a fragmentation of medium and long ROH segments. Furthermore, we tested different scenarios for the detection of HRR and evaluated the impact of the detection parameters used. Our findings suggest that HRRs are small and frequent in the sheep genome; however, further studies with higher density SNP chips and different detection methods are suggested for future research. We also defined ROH and HRR islands and identified common regions across the populations, where genes related to a variety of traits were reported, such as body size, muscle development, and brain functions. These results indicate that such regions are associated with many traits, and thus were under selective pressure in sheep breeds raised for different purposes. Interestingly, many candidate genes detected within the HRR islands were associated with brain integrity. We also observed a strong association of high linkage disequilibrium pattern with ROH compared with HRR, despite the fact that many regions in linkage disequilibrium were not located in ROH regions.

Identifiants

pubmed: 34573664
pii: ani11092696
doi: 10.3390/ani11092696
pmc: PMC8472390
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 143683/2020-9
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 16/19514-2
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 20/04461-6

Références

Anim Genet. 2019 Oct;50(5):512-525
pubmed: 31365135
J Cell Sci. 2016 Jul 1;129(13):2501-13
pubmed: 27185865
Rev Sci Tech. 1998 Apr;17(1):315-28
pubmed: 9638820
Nucleic Acids Res. 2021 Jan 8;49(D1):D545-D551
pubmed: 33125081
Anim Genet. 2018 Feb;49(1):71-81
pubmed: 29333609
PLoS Genet. 2012;8(11):e1003100
pubmed: 23209444
Genes (Basel). 2020 Dec 09;11(12):
pubmed: 33317115
Genetics. 2009 Nov;183(3):951-64
pubmed: 19720859
Eur J Hum Genet. 2019 Jun;27(6):909-918
pubmed: 30683929
Nat Genet. 2018 Mar;50(3):362-367
pubmed: 29459679
Sci Rep. 2018 Jan 12;8(1):636
pubmed: 29330505
PLoS One. 2017 Jul 26;12(7):e0181257
pubmed: 28746350
Nat Genet. 2017 Feb;49(2):274-281
pubmed: 27992416
Genetics. 2013 Mar;193(3):929-41
pubmed: 23307896
J Anim Breed Genet. 2021 Jan;138(1):1-3
pubmed: 33314373
BMC Genomics. 2020 Jan 29;21(1):94
pubmed: 31996125
BMC Genet. 2017 Mar 14;18(1):25
pubmed: 28288558
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17312-7
pubmed: 18981413
Hum Mol Genet. 2006 Mar 1;15(5):789-95
pubmed: 16436455
Animals (Basel). 2020 Mar 20;10(3):
pubmed: 32245132
PLoS One. 2017 May 2;12(5):e0176780
pubmed: 28463982
Sci Signal. 2017 Feb 21;10(467):
pubmed: 28223413
Nucleic Acids Res. 2019 Jul 2;47(W1):W199-W205
pubmed: 31114916
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11597-604
pubmed: 18697943
Anim Genet. 2017 Jun;48(3):255-271
pubmed: 27910110
Am J Hum Genet. 2008 Sep;83(3):359-72
pubmed: 18760389
BMC Genet. 2012 Aug 14;13:70
pubmed: 22888858
Nucleic Acids Res. 2019 Jan 8;47(D1):D701-D710
pubmed: 30407520
Reprod Sci. 2021 Jan;28(1):159-165
pubmed: 32749594
PLoS One. 2012;7(5):e37702
pubmed: 22662195
Genet Sel Evol. 2009 Jan 21;41:16
pubmed: 19284688
BMC Genomics. 2018 Jan 9;19(1):34
pubmed: 29316879
Animal. 2017 Jul;11(7):1107-1116
pubmed: 28077191
Front Genet. 2020 Apr 24;11:371
pubmed: 32391056
Genet Sel Evol. 2013 Oct 29;45:42
pubmed: 24168655
Eur J Hum Genet. 2015 Jan;23(1):54-60
pubmed: 24736736
J Anim Sci Biotechnol. 2016 May 05;7:29
pubmed: 27158491
Genet Sel Evol. 2019 Jul 3;51(1):37
pubmed: 31269896
Mol Cell Biol. 1998 Jan;18(1):566-75
pubmed: 9418903
J Neurodev Disord. 2016 Apr 15;8:11
pubmed: 27087860
Genomics. 2021 May;113(3):1407-1415
pubmed: 33705888
Nucleic Acids Res. 2021 Jan 8;49(D1):D884-D891
pubmed: 33137190
Front Genet. 2019 Oct 08;10:927
pubmed: 31649720
Front Genet. 2015 Jan 29;6:5
pubmed: 25688258
BMC Genet. 2013 Oct 30;14:106
pubmed: 24172017
Genet Sel Evol. 2015 Aug 14;47:66
pubmed: 26272623
Acta Pharmacol Sin. 2019 Dec;40(12):1532-1543
pubmed: 31165783
PLoS Biol. 2012 Feb;10(2):e1001258
pubmed: 22346734
PLoS One. 2013 Jun 25;8(6):e66569
pubmed: 23825544
Pediatr Surg Int. 2011 Feb;27(2):193-8
pubmed: 21085971
Anim Genet. 2015 Apr;46(2):110-21
pubmed: 25530322
BMC Genomics. 2018 Jan 30;19(1):106
pubmed: 29378520
Sci Rep. 2017 Dec 15;7(1):17647
pubmed: 29247174
J Anim Breed Genet. 2021 Mar;138(2):161-173
pubmed: 32949478
Gigascience. 2020 Dec 30;9(12):
pubmed: 33377911
Am J Hum Genet. 2007 Sep;81(3):559-75
pubmed: 17701901
Anim Sci J. 2016 Feb;87(2):159-67
pubmed: 26260584
Genetics. 2010 Aug;185(4):1451-61
pubmed: 20479146
BMC Genomics. 2011 Sep 23;12:460
pubmed: 21943305
Animals (Basel). 2020 Dec 03;10(12):
pubmed: 33287320
Nat Commun. 2016 Aug 26;7:12567
pubmed: 27562453
Genet Sel Evol. 2017 Apr 28;49(1):41
pubmed: 28454565
BMC Genomics. 2015 Oct 09;16:764
pubmed: 26452642
Genet Sel Evol. 2017 Nov 14;49(1):84
pubmed: 29137622
Dev Genes Evol. 2018 Mar;228(2):141-147
pubmed: 29549427
Comput Graph Forum. 2019 Jun;38(3):781-805
pubmed: 31768085
BMC Genomics. 2021 Jan 6;22(1):7
pubmed: 33407115
Anim Genet. 2013 Dec;44(6):758-62
pubmed: 23859468
Genet Sel Evol. 2021 Jan 4;53(1):2
pubmed: 33397285
Anim Genet. 2016 Feb;47(1):19-27
pubmed: 26559490

Auteurs

Alana Selli (A)

Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil.

Ricardo V Ventura (RV)

Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil.

Pablo A S Fonseca (PAS)

Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.

Marcos E Buzanskas (ME)

Department of Animal Science, Federal University of Paraíba, João Pessoa 58051-900, Paraiba, Brazil.

Lucas T Andrietta (LT)

Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil.

Júlio C C Balieiro (JCC)

Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil.

Luiz F Brito (LF)

Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.

Classifications MeSH