Estimation of Human Mobility Patterns for Forecasting the Early Spread of Disease.
COVID-19
epidemic model
human mobility
infectious disease
travel flow
Journal
Healthcare (Basel, Switzerland)
ISSN: 2227-9032
Titre abrégé: Healthcare (Basel)
Pays: Switzerland
ID NLM: 101666525
Informations de publication
Date de publication:
16 Sep 2021
16 Sep 2021
Historique:
received:
20
07
2021
revised:
14
09
2021
accepted:
14
09
2021
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
29
9
2021
Statut:
epublish
Résumé
Human mobility data are indispensable in modeling large-scale epidemics, especially in predicting the spatial spread of diseases and in evaluating spatial heterogeneity intervention strategies. However, statistical data that can accurately describe large-scale population migration are often difficult to obtain. We propose an algorithm model based on the network science approach, which estimates the travel flow data in mainland China by transforming location big data and airline operation data into network structure information. In addition, we established a simplified deterministic SEIR (Susceptible-Exposed-Infectious-Recovered)-metapopulation model to verify the effectiveness of the estimated travel flow data in the study of predicting epidemic spread. The results show that individual travel distance in mainland China is mainly within 100 km. There is far more travel between prefectures within the same province than across provinces. The epidemic spatial spread model incorporating estimated travel data accurately predicts the spread of COVID-19 in mainland China. The results suggest that there are far more travelers than usual during the Spring Festival in mainland China, and the number of travelers from Wuhan mainly determines the number of confirmed cases of COVID-19 in each prefecture.
Identifiants
pubmed: 34574996
pii: healthcare9091224
doi: 10.3390/healthcare9091224
pmc: PMC8468459
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Sci Data. 2020 Jul 8;7(1):230
pubmed: 32641758
N Engl J Med. 2020 Mar 26;382(13):1199-1207
pubmed: 31995857
Nature. 2021 Jan;589(7840):82-87
pubmed: 33171481
PLoS One. 2013 May 15;8(5):e64317
pubmed: 23691194
Science. 2009 Jun 19;324(5934):1557-61
pubmed: 19433588
Nature. 2020 Sep;585(7825):410-413
pubmed: 32365354
Nat Hum Behav. 2020 Aug;4(8):800-810
pubmed: 32424257
Nature. 2008 Jun 5;453(7196):779-82
pubmed: 18528393
J Comput Sci. 2010 Aug 1;1(3):132-145
pubmed: 21415939
Science. 2020 May 1;368(6490):493-497
pubmed: 32213647
JAMA. 2020 May 19;323(19):1915-1923
pubmed: 32275295
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21484-9
pubmed: 20018697
Sci Total Environ. 2020 Nov 1;741:140489
pubmed: 32599395
Science. 2013 Dec 13;342(6164):1337-42
pubmed: 24337289
Int J Infect Dis. 2020 May;94:154-155
pubmed: 32179137
Lancet Infect Dis. 2020 Nov;20(11):1247-1254
pubmed: 32621869
Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27087-27089
pubmed: 33060300
Science. 2014 Nov 7;346(6210):1243089
pubmed: 25378629
Nature. 2012 Feb 26;484(7392):96-100
pubmed: 22367540
Bull Math Biol. 2016 Feb;78(2):185-209
pubmed: 26763222
Science. 2020 Jun 26;368(6498):1481-1486
pubmed: 32350060
Nature. 2020 May;581(7809):465-469
pubmed: 32235945
Travel Med Infect Dis. 2006 Mar;4(2):53-60
pubmed: 16887725
Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1118-23
pubmed: 18216267
J Travel Med. 2015 May-Jun;22(3):186-93
pubmed: 25756472
J Travel Med. 2015 Jan-Feb;22(1):72
pubmed: 25560231
BMC Infect Dis. 2010 Jun 29;10:190
pubmed: 20587041
Biology (Basel). 2021 Jan 22;10(2):
pubmed: 33499138
Sci Rep. 2020 Nov 26;10(1):20742
pubmed: 33244071
Euro Surveill. 2019 Aug;24(31):
pubmed: 31387671
Nat Microbiol. 2020 Apr;5(4):536-544
pubmed: 32123347
J Theor Biol. 2008 Apr 7;251(3):450-67
pubmed: 18222487
Science. 2020 Sep 18;369(6510):1465-1470
pubmed: 32680881
J Transp Geogr. 2015 Oct;48:52-60
pubmed: 32288373
Sci Data. 2020 Nov 12;7(1):390
pubmed: 33184280