Star-PAP RNA Binding Landscape Reveals Novel Role of Star-PAP in mRNA Metabolism That Requires RBM10-RNA Association.


Journal

International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791

Informations de publication

Date de publication:
15 Sep 2021
Historique:
received: 17 07 2021
revised: 08 08 2021
accepted: 19 08 2021
entrez: 28 9 2021
pubmed: 29 9 2021
medline: 21 10 2021
Statut: epublish

Résumé

Star-PAP is a non-canonical poly(A) polymerase that selects mRNA targets for polyadenylation. Yet, genome-wide direct Star-PAP targets or the mechanism of specific mRNA recognition is still vague. Here, we employ HITS-CLIP to map the cellular Star-PAP binding landscape and the mechanism of global Star-PAP mRNA association. We show a transcriptome-wide association of Star-PAP that is diminished on Star-PAP depletion. Consistent with its role in the 3'-UTR processing, we observed a high association of Star-PAP at the 3'-UTR region. Strikingly, there is an enrichment of Star-PAP at the coding region exons (CDS) in 42% of target mRNAs. We demonstrate that Star-PAP binding de-stabilises these mRNAs indicating a new role of Star-PAP in mRNA metabolism. Comparison with earlier microarray data reveals that while UTR-associated transcripts are down-regulated, CDS-associated mRNAs are largely up-regulated on Star-PAP depletion. Strikingly, the knockdown of a Star-PAP coregulator RBM10 resulted in a global loss of Star-PAP association on target mRNAs. Consistently, RBM10 depletion compromises 3'-end processing of a set of Star-PAP target mRNAs, while regulating stability/turnover of a different set of mRNAs. Our results establish a global profile of Star-PAP mRNA association and a novel role of Star-PAP in the mRNA metabolism that requires RBM10-mRNA association in the cell.

Identifiants

pubmed: 34576144
pii: ijms22189980
doi: 10.3390/ijms22189980
pmc: PMC8469156
pii:
doi:

Substances chimiques

RBM10 protein, human 0
RNA, Messenger 0
RNA-Binding Proteins 0
Nucleotidyltransferases EC 2.7.7.-
TUT1 protein, human EC 2.7.7.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Déclaration de conflit d'intérêts

The authors declare no conflicts of interest.

Références

J Biol Chem. 2008 May 2;283(18):12665-73
pubmed: 18305108
Nature. 2009 Jul 23;460(7254):479-86
pubmed: 19536157
FEBS Lett. 2014 Mar 18;588(6):942-7
pubmed: 24530524
EMBO J. 2003 Jun 2;22(11):2821-30
pubmed: 12773396
Genes Dev. 1999 Jul 15;13(14):1884-97
pubmed: 10421639
Nucleic Acids Res. 2017 Sep 6;45(15):8930-8942
pubmed: 28911096
EMBO Mol Med. 2013 Sep;5(9):1431-42
pubmed: 24000153
RNA. 2004 Apr;10(4):565-73
pubmed: 15037765
Nat Protoc. 2014;9(6):1428-50
pubmed: 24853928
J Biol Chem. 2009 Aug 21;284(34):22803-14
pubmed: 19509282
Curr Opin Cell Biol. 2004 Jun;16(3):272-8
pubmed: 15145351
Genome Res. 2002 Aug;12(8):1231-45
pubmed: 12176931
Curr Protoc Mol Biol. 2006 Aug;Chapter 27:Unit 27.4
pubmed: 18265380
Nucleic Acids Res. 1996 Aug 1;24(15):2990-7
pubmed: 8760884
Oncogene. 2010 Jan 14;29(2):305-12
pubmed: 19881542
Biol Open. 2019 Nov 6;8(11):
pubmed: 31649118
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Curr Opin Virol. 2019 Dec;39:23-32
pubmed: 31408800
Nucleic Acids Res. 2011 Oct;39(18):7961-73
pubmed: 21729869
Nature. 2006 Dec 14;444(7121):953-6
pubmed: 17128255
Nat Methods. 2013 Feb;10(2):133-9
pubmed: 23241633
Nucleic Acids Res. 1998 Jul 1;26(13):3119-26
pubmed: 9628908
Nature. 2008 Feb 21;451(7181):1013-7
pubmed: 18288197
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1419-E1428
pubmed: 29208711
Bioinformatics. 2017 Feb 15;33(4):566-567
pubmed: 27797762
Cell. 2001 Nov 16;107(4):451-64
pubmed: 11719186
PLoS One. 2013 Jul 18;8(7):e69630
pubmed: 23874977
RNA. 2006 Aug;12(8):1494-504
pubmed: 16790842
Nucleic Acids Res. 2017 Jun 2;45(10):6064-6073
pubmed: 28334781
Nat Rev Mol Cell Biol. 2017 Jan;18(1):18-30
pubmed: 27677860
J Cell Biochem. 2005 Jan 1;94(1):5-24
pubmed: 15514923
Microbiol Mol Biol Rev. 1999 Jun;63(2):405-45
pubmed: 10357856
Genes Dev. 2014 Nov 1;28(21):2381-93
pubmed: 25301781
Cell Rep. 2018 Sep 25;24(13):3539-3553
pubmed: 30257214
Mol Cell. 2004 May 21;14(4):457-64
pubmed: 15149595
Wiley Interdiscip Rev RNA. 2011 Jan-Feb;2(1):42-57
pubmed: 21278925
Genes Dev. 2014 Nov 1;28(21):2370-80
pubmed: 25301780
FEBS Lett. 2014 Jun 27;588(14):2185-97
pubmed: 24873880
Cell Mol Life Sci. 2008 Apr;65(7-8):1099-122
pubmed: 18158581
Nucleic Acids Res. 2016 Apr 7;44(6):2873-87
pubmed: 26809675
Cell. 1999 Sep 17;98(6):835-45
pubmed: 10499800
Nat Struct Mol Biol. 2018 Feb;25(2):135-138
pubmed: 29358758
Genes Dev. 2015 Aug 1;29(15):1599-604
pubmed: 26253535
Mol Cell Biol. 2018 Feb 12;38(5):
pubmed: 29203642
Mol Cell. 2004 Jun 4;14(5):571-83
pubmed: 15175153
Nucleic Acids Res. 2015 Aug 18;43(14):7005-20
pubmed: 26138484
Biochim Biophys Acta. 2004 May 25;1678(2-3):67-84
pubmed: 15157733
Genome Biol. 2008;9(9):R137
pubmed: 18798982
Cell Death Dis. 2017 Feb 2;8(2):e2582
pubmed: 28151486
Nucleic Acids Res. 2019 Nov 18;47(20):10771-10787
pubmed: 31598705
Trends Biochem Sci. 1996 Jul;21(7):247-50
pubmed: 8755245
Biol Cell. 2013 Apr;105(4):162-74
pubmed: 23294349
Nat Rev Genet. 2007 Jul;8(7):533-43
pubmed: 17572691
Nucleic Acids Res. 2001 May 1;29(9):e45
pubmed: 11328886
Am J Med Genet A. 2011 Oct;155A(10):2516-20
pubmed: 21910224
Mol Cell Biol. 2001 Aug;21(16):5614-23
pubmed: 11463842
Methods. 2005 Dec;37(4):376-86
pubmed: 16314267
Nucleic Acids Res. 2012 Mar;40(6):2639-52
pubmed: 22110043
Mol Cell. 2012 Jan 13;45(1):25-37
pubmed: 22244330
Mol Cell Biol. 1997 Jul;17(7):3907-14
pubmed: 9199325
Mol Cell Biol. 2011 Jul;31(13):2667-82
pubmed: 21536652
Nat Struct Mol Biol. 2013 Jun;20(6):735-9
pubmed: 23644599
Mol Cell. 2009 Feb 13;33(3):365-76
pubmed: 19217410
Cell. 2012 Sep 14;150(6):1107-20
pubmed: 22980975
Trends Biochem Sci. 1999 Sep;24(9):342-4
pubmed: 10470032
Nucleic Acids Res. 2013 Feb 1;41(4):2644-58
pubmed: 23303783
Nucleic Acids Res. 2016 Jan 29;44(2):811-23
pubmed: 26496945
EMBO J. 2010 Dec 15;29(24):4132-45
pubmed: 21102410
Nat Commun. 2017 Jun 07;8:15788
pubmed: 28589955
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
J Mol Biol. 2011 Mar 25;407(2):273-83
pubmed: 21256132
Brief Bioinform. 2013 Mar;14(2):178-92
pubmed: 22517427
FEBS Lett. 2008 Jun 18;582(14):1977-86
pubmed: 18342629
Cold Spring Harb Protoc. 2009 Jun;2009(6):pdb.prot5234
pubmed: 20147192

Auteurs

Ganesh R Koshre (GR)

Cardiovascular Diseases & Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India.
Manipal Academy of Higher Education, Manipal 576104, India.

Feba Shaji (F)

Cardiovascular Diseases & Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India.
Regional Centre for Biotechnology, Faridabad 121001, India.

Neeraja K Mohanan (NK)

Cardiovascular Diseases & Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India.
Manipal Academy of Higher Education, Manipal 576104, India.

Nimmy Mohan (N)

Cardiovascular Diseases & Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India.

Jamshaid Ali (J)

Bioinformatics Facility, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695585, India.

Rakesh S Laishram (RS)

Cardiovascular Diseases & Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH