Silicon Nanowires: A Breakthrough for Thermoelectric Applications.
figure of merit
silicon nanowire
thermal conductivity
thermoelectricity
Journal
Materials (Basel, Switzerland)
ISSN: 1996-1944
Titre abrégé: Materials (Basel)
Pays: Switzerland
ID NLM: 101555929
Informations de publication
Date de publication:
14 Sep 2021
14 Sep 2021
Historique:
received:
26
07
2021
revised:
07
09
2021
accepted:
09
09
2021
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
29
9
2021
Statut:
epublish
Résumé
The potentialities of silicon as a starting material for electronic devices are well known and largely exploited, driving the worldwide spreading of integrated circuits. When nanostructured, silicon is also an excellent material for thermoelectric applications, and hence it could give a significant contribution in the fundamental fields of energy micro-harvesting (scavenging) and macro-harvesting. On the basis of recently published experimental works, we show that the power factor of silicon is very high in a large temperature range (from room temperature up to 900 K). Combining the high power factor with the reduced thermal conductivity of monocrystalline silicon nanowires and nanostructures, we show that the foreseen figure of merit ZT could be very high, reaching values well above 1 at temperatures around 900 K. We report the best parameters to optimize the thermoelectric properties of silicon nanostructures, in terms of doping concentration and nanowire diameter. At the end, we report some technological processes and solutions for the fabrication of macroscopic thermoelectric devices, based on large numbers of silicon nanowire/nanostructures, showing some fabricated demonstrators.
Identifiants
pubmed: 34576529
pii: ma14185305
doi: 10.3390/ma14185305
pmc: PMC8466014
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Nano Lett. 2020 Jul 8;20(7):4748-4753
pubmed: 32463681
Nano Lett. 2016 Jul 13;16(7):4348-54
pubmed: 27351210
Nanotechnology. 2013 Aug 23;24(33):335302
pubmed: 23892266
Beilstein J Nanotechnol. 2020 Nov 11;11:1707-1713
pubmed: 33224701
Nanoscale. 2021 Apr 21;13(15):7252-7265
pubmed: 33889903
Science. 2003 Apr 4;300(5616):112-5
pubmed: 12637672
ACS Nano. 2011 Apr 26;5(4):3222-9
pubmed: 21388226
Phys Rev Lett. 2009 Mar 27;102(12):125503
pubmed: 19392295
ACS Appl Mater Interfaces. 2021 Jan 13;13(1):1169-1177
pubmed: 33348977
Phys Rev B Condens Matter. 1993 May 15;47(19):12727-12731
pubmed: 10005469
Nanotechnology. 2018 Dec 14;29(50):505402
pubmed: 30277467
Nano Lett. 2012 May 9;12(5):2475-82
pubmed: 22524211
Nanotechnology. 2013 Dec 20;24(50):505718
pubmed: 24285219
J Nanosci Nanotechnol. 2017 Mar;17(3):1657-662
pubmed: 29697242
Nanotechnology. 2013 May 24;24(20):205402
pubmed: 23598565
Nano Lett. 2010 Mar 10;10(3):847-51
pubmed: 20163124
Nano Lett. 2013 Jun 12;13(6):2592-7
pubmed: 23668777
Rev Sci Instrum. 2018 Jan;89(1):016104
pubmed: 29390729
Nano Lett. 2017 Jan 11;17(1):276-283
pubmed: 28005386
Nature. 2008 Jan 10;451(7175):168-71
pubmed: 18185583
Nanotechnology. 2014 Sep 19;25(37):375701
pubmed: 25148135
Phys Rev B Condens Matter. 1993 Jun 15;47(24):16631-16634
pubmed: 10006109
J Nanosci Nanotechnol. 2017 Mar;17(3):1627-633
pubmed: 29693988
Adv Mater. 2011 Jan 11;23(2):285-308
pubmed: 20859941
Nanotechnology. 2018 Apr 3;29(13):135401
pubmed: 29355836
Beilstein J Nanotechnol. 2014 Aug 14;5:1268-84
pubmed: 25247111
Nano Lett. 2011 Dec 14;11(12):5252-8
pubmed: 22007902
Nature. 2008 Jan 10;451(7175):163-7
pubmed: 18185582
Nanotechnology. 2020 Jul 27;31(40):404002
pubmed: 32521515
Nano Lett. 2015 May 13;15(5):3159-65
pubmed: 25831487
Nanomaterials (Basel). 2021 Feb 18;11(2):
pubmed: 33670539
Nano Lett. 2016 Jul 13;16(7):4133-40
pubmed: 27243378