Enhanced Thermoelectric Performance by Surface Engineering in SnTe-PbS Nanocomposites.
SnTe
carrier mobility
grain size
nanocomposites
thermoelectric
Journal
Materials (Basel, Switzerland)
ISSN: 1996-1944
Titre abrégé: Materials (Basel)
Pays: Switzerland
ID NLM: 101555929
Informations de publication
Date de publication:
19 Sep 2021
19 Sep 2021
Historique:
received:
17
08
2021
revised:
16
09
2021
accepted:
17
09
2021
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
29
9
2021
Statut:
epublish
Résumé
Thermoelectric materials enable the direct conversion between heat and electricity. SnTe is a promising candidate due to its high charge transport performance. Here, we prepared SnTe nanocomposites by employing an aqueous method to synthetize SnTe nanoparticles (NP), followed by a unique surface treatment prior NP consolidation. This synthetic approach allowed optimizing the charge and phonon transport synergistically. The novelty of this strategy was the use of a soluble PbS molecular complex prepared using a thiol-amine solvent mixture that upon blending is adsorbed on the SnTe NP surface. Upon consolidation with spark plasma sintering, SnTe-PbS nanocomposite is formed. The presence of PbS complexes significantly compensates for the Sn vacancy and increases the average grain size of the nanocomposite, thus improving the carrier mobility. Moreover, lattice thermal conductivity is also reduced by the Pb and S-induced mass and strain fluctuation. As a result, an enhanced
Identifiants
pubmed: 34576640
pii: ma14185416
doi: 10.3390/ma14185416
pmc: PMC8466123
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Lise Meitner Project
ID : M2889-N
Références
ACS Energy Lett. 2021 Feb 12;6(2):581-587
pubmed: 33614964
Phys Chem Chem Phys. 2014 Oct 14;16(38):20741-8
pubmed: 25162449
Materials (Basel). 2017 Feb 26;10(3):
pubmed: 28772593
Angew Chem Int Ed Engl. 2015 Jul 13;54(29):8378-81
pubmed: 26036319
Nano Lett. 2018 Apr 11;18(4):2557-2563
pubmed: 29546994
Science. 2020 Mar 13;367(6483):1196-1197
pubmed: 32165572
Phys Rev Lett. 2012 Apr 20;108(16):166601
pubmed: 22680741
J Am Chem Soc. 2019 May 22;141(20):8025-8029
pubmed: 31017419
ACS Nano. 2019 Jun 25;13(6):6572-6580
pubmed: 31185159
Nature. 2012 Sep 20;489(7416):414-8
pubmed: 22996556
ACS Nano. 2018 Jul 24;12(7):7174-7184
pubmed: 29966413
J Am Chem Soc. 2021 Jun 16;143(23):8538-8542
pubmed: 34076411
Nat Commun. 2016 Mar 07;7:10766
pubmed: 26948987
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13261-6
pubmed: 23901106
Chem Soc Rev. 2017 Jun 19;46(12):3510-3528
pubmed: 28470243
J Am Chem Soc. 2014 May 14;136(19):7006-17
pubmed: 24785377
Phys Rev B Condens Matter. 1992 Sep 1;46(10):6131-6140
pubmed: 10002297