Artificial Intelligence-Enabled ECG Algorithm Based on Improved Residual Network for Wearable ECG.
ECG science popularization
biomedical monitoring
cloud computing
fabric electrodes
residual network
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
09 Sep 2021
09 Sep 2021
Historique:
received:
11
08
2021
revised:
07
09
2021
accepted:
07
09
2021
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
30
9
2021
Statut:
epublish
Résumé
Heart disease is the leading cause of death for men and women globally. The residual network (ResNet) evolution of electrocardiogram (ECG) technology has contributed to our understanding of cardiac physiology. We propose an artificial intelligence-enabled ECG algorithm based on an improved ResNet for a wearable ECG. The system hardware consists of a wearable ECG with conductive fabric electrodes, a wireless ECG acquisition module, a mobile terminal App, and a cloud diagnostic platform. The algorithm adopted in this study is based on an improved ResNet for the rapid classification of different types of arrhythmia. First, we visualize ECG data and convert one-dimensional ECG signals into two-dimensional images using Gramian angular fields. Then, we improve the ResNet-50 network model, add multistage shortcut branches to the network, and optimize the residual block. The ReLu activation function is replaced by a scaled exponential linear units (SELUs) activation function to improve the expression ability of the model. Finally, the images are input into the improved ResNet network for classification. The average recognition rate of this classification algorithm against seven types of arrhythmia signals (atrial fibrillation, atrial premature beat, ventricular premature beat, normal beat, ventricular tachycardia, atrial tachycardia, and sinus bradycardia) is 98.3%.
Identifiants
pubmed: 34577248
pii: s21186043
doi: 10.3390/s21186043
pmc: PMC8472929
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : 61675154
Organisme : Tianjin Key Research and Development Program
ID : 19YFZCSY00180
Organisme : Tianjin Major Project for Civil-Military Integration of Science and Technology
ID : 18ZXJMTG00260
Organisme : Tianjin Science and Technology Program
ID : 20YDTPJC01380
Organisme : Tianjin Municipal Special Foundation for Key Cultivation of China
ID : XB202007
Références
IEEE Trans Biomed Eng. 1997 Sep;44(9):891-900
pubmed: 9282481
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1483-1493
pubmed: 31647445
IEEE Trans Biomed Eng. 2009 May;56(5):1415-26
pubmed: 19203885
Ann Biomed Eng. 2009 Sep;37(9):1701-9
pubmed: 19533358
J Med Internet Res. 2015 Feb 24;17(2):e52
pubmed: 25803266
Sensors (Basel). 2018 Jun 29;18(7):
pubmed: 29966276
IEEE Trans Biomed Eng. 2016 Mar;63(3):664-75
pubmed: 26285054
IEEE Trans Biomed Eng. 2021 Feb;68(2):448-460
pubmed: 32746035
Circulation. 2017 Jul 18;136(3):e1-e23
pubmed: 28620111
Comput Biol Med. 2018 Nov 1;102:278-287
pubmed: 29903630