A Novel Automate Python Edge-to-Edge: From Automated Generation on Cloud to User Application Deployment on Edge of Deep Neural Networks for Low Power IoT Systems FPGA-Based Acceleration.

Python framework cloud computing deep neural networks (DNNs) edge computing field programmable gate array (FPGA) hardware acceleration high-level synthesis (HLS) tools internet of things (IoT) low-cost low-power

Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
09 Sep 2021
Historique:
received: 09 06 2021
revised: 18 08 2021
accepted: 06 09 2021
entrez: 28 9 2021
pubmed: 29 9 2021
medline: 30 9 2021
Statut: epublish

Résumé

Deep Neural Networks (DNNs) deployment for IoT Edge applications requires strong skills in hardware and software. In this paper, a novel design framework fully automated for Edge applications is proposed to perform such a deployment on System-on-Chips. Based on a high-level Python interface that mimics the leading Deep Learning software frameworks, it offers an easy way to implement a hardware-accelerated DNN on an FPGA. To do this, our design methodology covers the three main phases: (a) customization: where the user specifies the optimizations needed on each DNN layer, (b) generation: the framework generates on the Cloud the necessary binaries for both FPGA and software parts, and (c) deployment: the SoC on the Edge receives the resulting files serving to program the FPGA and related Python libraries for user applications. Among the study cases, an optimized DNN for the MNIST database can speed up more than 60× a software version on the ZYNQ 7020 SoC and still consume less than 0.43W. A comparison with the state-of-the-art frameworks demonstrates that our methodology offers the best trade-off between throughput, power consumption, and system cost.

Identifiants

pubmed: 34577258
pii: s21186050
doi: 10.3390/s21186050
pmc: PMC8467982
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Références

Metabolism. 2017 Apr;69S:S36-S40
pubmed: 28126242

Auteurs

Tarek Belabed (T)

Electronics and Microelectronics Unit (SEMi), University of Mons, 7000 Mons, Belgium.
Ecole Nationale d'Ingénieurs de Sousse, Université de Sousse, Sousse 4000, Tunisia.
Laboratoire de Microélectronique et Instrumentation, Faculté des Sciences de Monastir, Université de Monastir, Monastir 5019, Tunisia.

Vitor Ramos Gomes da Silva (V)

Electronics and Microelectronics Unit (SEMi), University of Mons, 7000 Mons, Belgium.

Alexandre Quenon (A)

Electronics and Microelectronics Unit (SEMi), University of Mons, 7000 Mons, Belgium.

Carlos Valderamma (C)

Electronics and Microelectronics Unit (SEMi), University of Mons, 7000 Mons, Belgium.

Chokri Souani (C)

Institut Supérieur des Sciences Appliquées et de Technologie de Sousse, Université de Sousse, Sousse 4003, Tunisia.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
Cephalometry Humans Anatomic Landmarks Software Internet
Humans Algorithms Software Artificial Intelligence Computer Simulation

Classifications MeSH