Elucidating the Effects of Curcumin against Influenza Using In Silico and In Vitro Approaches.
curcumin
inflammation
influenza
molecular docking
network pharmacology
systems biology
Journal
Pharmaceuticals (Basel, Switzerland)
ISSN: 1424-8247
Titre abrégé: Pharmaceuticals (Basel)
Pays: Switzerland
ID NLM: 101238453
Informations de publication
Date de publication:
30 Aug 2021
30 Aug 2021
Historique:
received:
28
06
2021
revised:
21
08
2021
accepted:
24
08
2021
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
29
9
2021
Statut:
epublish
Résumé
The influenza virus is a constantly evolving pathogen that challenges medical and public health systems. Traditionally, curcumin has been used to treat airway inflammatory diseases, such as bronchitis and pneumonia. To elucidate common targets of curcumin and influenza infection and underlying mechanisms, we employed network pharmacology and molecular docking approaches and confirmed results using in vitro experiments. Biological targets of curcumin and influenza were collected, and potential targets were identified by constructing compound-disease target (C-D) and protein-protein interaction (PPI) networks. The ligand-target interaction was determined using the molecular docking method, and in vitro antiviral experiments and target confirmation were conducted to evaluate curcumin's effects on influenza. Our network and pathway analyses implicated the four targets of AKT1, RELA, MAPK1, and TP53 that could be involved in the inhibitory effects of curcumin on influenza. The binding energy calculations of each ligand-target interaction in the molecular docking showed that curcumin bound to AKT1 with the highest affinity among the four targets. In vitro experiments, in which influenza virus-infected MDCK cells were pre-, co-, or post-treated with curcumin, confirmed curcumin's prophylactic and therapeutic effects. Influenza virus induction increased the level of mRNA expression of AKT in MDCK cells, and the level was attenuated by curcumin treatment. Collectively, our findings identified potential targets of curcumin against influenza and suggest curcumin as a potential therapy for influenza infection.
Identifiants
pubmed: 34577580
pii: ph14090880
doi: 10.3390/ph14090880
pmc: PMC8465221
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Konkuk University
ID : Konkuk University
Références
Ann N Y Acad Sci. 2006 Dec;1091:151-69
pubmed: 17341611
J Med Chem. 2007 Mar 22;50(6):1280-7
pubmed: 17300186
J Virol. 2010 Nov;84(21):11359-73
pubmed: 20702616
N Biotechnol. 2015 Jan 25;32(1):54-64
pubmed: 25224922
Cancer Res. 2007 Mar 1;67(5):1988-96
pubmed: 17332326
Int Immunopharmacol. 2016 Jul;36:282-290
pubmed: 27208432
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Int Immunopharmacol. 2018 Jan;54:177-187
pubmed: 29153953
J Ethnopharmacol. 2019 Jun 28;238:111826
pubmed: 30910579
J Cheminform. 2012 Aug 13;4(1):17
pubmed: 22889332
Methods Mol Biol. 2015;1263:243-50
pubmed: 25618350
Biophys Chem. 2010 Mar;147(1-2):28-34
pubmed: 20071071
Curr Protoc Bioinformatics. 2016 Jun 20;54:1.30.1-1.30.33
pubmed: 27322403
Nucleic Acids Res. 2003 Jan 1;31(1):258-61
pubmed: 12519996
J Biol Chem. 2004 Mar 26;279(13):12232-41
pubmed: 14709551
Nat Protoc. 2009;4(1):44-57
pubmed: 19131956
PLoS One. 2012;7(5):e37608
pubmed: 22666371
Nature. 1997 Jun 12;387(6634):673-6
pubmed: 9192891
Apoptosis. 2007 Aug;12(8):1419-32
pubmed: 17468837
Nat Rev Dis Primers. 2018 Jun 28;4(1):3
pubmed: 29955068
Nucleic Acids Res. 2021 Jan 8;49(D1):D437-D451
pubmed: 33211854
J Comput Chem. 2010 Jan 30;31(2):455-61
pubmed: 19499576
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D668-72
pubmed: 16381955
Nucleic Acids Res. 2021 Jan 8;49(D1):D545-D551
pubmed: 33125081
Front Immunol. 2018 May 31;9:1193
pubmed: 29904383
Biochem Biophys Res Commun. 2014 Jul 18;450(1):891-8
pubmed: 24971535
Nucleic Acids Res. 2018 Jul 2;46(W1):W363-W367
pubmed: 29860391
Cell Microbiol. 2006 Aug;8(8):1336-48
pubmed: 16882036
Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613
pubmed: 30476243
Cell. 1998 Dec 11;95(6):749-58
pubmed: 9865693
Oncogene. 2005 Nov 14;24(50):7391-3
pubmed: 16288285
Cell Res. 2002 Mar;12(1):9-18
pubmed: 11942415
PLoS One. 2010 Sep 23;5(9):e12913
pubmed: 20886116
Arch Pharm Res. 2020 May;43(5):489-502
pubmed: 32248350
Clin Exp Pharmacol Physiol. 2018 Jan;45(1):84-93
pubmed: 28853207
Molecules. 2021 Jan 18;26(2):
pubmed: 33477701
Antimicrob Agents Chemother. 2014 Jul;58(7):3689-96
pubmed: 24752266
Nat Rev Immunol. 2019 Jun;19(6):383-397
pubmed: 30837674
Eur Respir J. 2015 May;45(5):1463-78
pubmed: 25792631
Signal Transduct Target Ther. 2017;2:
pubmed: 29158945
J Gen Virol. 2007 Mar;88(Pt 3):942-950
pubmed: 17325368
Genes Dev. 1999 Nov 15;13(22):2905-27
pubmed: 10579998
Nucleic Acids Res. 2018 Jan 4;46(D1):D8-D13
pubmed: 29140470
Bioinformatics. 2016 Jul 15;32(14):2236-8
pubmed: 27153650
Biomolecules. 2020 Mar 08;10(3):
pubmed: 32182711