A Composite Microfiber for Biodegradable Stretchable Electronics.

biodegradable microfiber poly(glycerol sebacate) poly(vinyl alcohol) stretchable electronics transient electronics

Journal

Micromachines
ISSN: 2072-666X
Titre abrégé: Micromachines (Basel)
Pays: Switzerland
ID NLM: 101640903

Informations de publication

Date de publication:
28 Aug 2021
Historique:
received: 29 07 2021
revised: 24 08 2021
accepted: 25 08 2021
entrez: 28 9 2021
pubmed: 29 9 2021
medline: 29 9 2021
Statut: epublish

Résumé

Biodegradable stretchable electronics have demonstrated great potential for future applications in stretchable electronics and can be resorbed, dissolved, and disintegrated in the environment. Most biodegradable electronic devices have used flexible biodegradable materials, which have limited conformality in wearable and implantable devices. Here, we report a biodegradable, biocompatible, and stretchable composite microfiber of poly(glycerol sebacate) (PGS) and polyvinyl alcohol (PVA) for transient stretchable device applications. Compositing high-strength PVA with stretchable and biodegradable PGS with poor processability, formability, and mechanical strength overcomes the limits of pure PGS. As an application, the stretchable microfiber-based strain sensor developed by the incorporation of Au nanoparticles (AuNPs) into a composite microfiber showed stable current response under cyclic and dynamic stretching at 30% strain. The sensor also showed the ability to monitor the strain produced by tapping, bending, and stretching of the finger, knee, and esophagus. The biodegradable and stretchable composite materials of PGS with additive PVA have great potential for use in transient and environmentally friendly stretchable electronics with reduced environmental footprint.

Identifiants

pubmed: 34577680
pii: mi12091036
doi: 10.3390/mi12091036
pmc: PMC8468109
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : National Research Foundation of Korea
ID : 2019R1A6A1A03033215, 2020R1A2C3013480

Références

Sci Rep. 2016 Nov 04;6:36643
pubmed: 27811991
Nat Commun. 2020 Feb 27;11(1):1107
pubmed: 32107380
Acta Biomater. 2014 Jun;10(6):2434-45
pubmed: 24561709
J Mater Chem B. 2015 Apr 28;3(16):3222-3233
pubmed: 32262316
Nat Mater. 2020 Oct;19(10):1102-1109
pubmed: 32541932
Adv Mater. 2021 May;33(19):e2004413
pubmed: 33336520
J Colloid Interface Sci. 2017 Dec 15;508:87-94
pubmed: 28822864
ACS Appl Bio Mater. 2021 Jan 18;4(1):163-194
pubmed: 33842859
ACS Omega. 2017 Oct 31;2(10):6321-6328
pubmed: 30023516
Adv Mater. 2021 Jul;33(28):e2000619
pubmed: 32310313
Adv Mater. 2018 Jul;30(28):e1707624
pubmed: 29736971
ACS Appl Mater Interfaces. 2020 Feb 19;12(7):8761-8772
pubmed: 31972077
Biosens Bioelectron. 2020 Jan 1;147:111781
pubmed: 31629214
Small. 2019 Mar;15(11):e1805084
pubmed: 30690886
Mater Sci Eng C Mater Biol Appl. 2018 May 1;86:151-172
pubmed: 29525090
Proc Inst Mech Eng H. 2011 Oct;225(10):1015-20
pubmed: 22204123
Chem Soc Rev. 2018 Jun 18;47(12):4545-4580
pubmed: 29722412
Chem Soc Rev. 2014 Jan 21;43(2):588-610
pubmed: 24121237
Nature. 2016 Feb 4;530(7588):71-6
pubmed: 26779949
Int J Biol Macromol. 2018 Mar;108:1110-1119
pubmed: 29126944
Polymers (Basel). 2021 May 12;13(10):
pubmed: 34065779
Clin Nutr. 1995 Jun;14(3):143-8
pubmed: 16843924
Nanomaterials (Basel). 2018 Sep 17;8(9):
pubmed: 30227671
Biomaterials. 2013 May;34(16):3970-3983
pubmed: 23453201
ACS Cent Sci. 2018 Mar 28;4(3):337-348
pubmed: 29632879
Adv Sci (Weinh). 2021 Mar 15;8(10):2004029
pubmed: 34026449
ACS Appl Mater Interfaces. 2021 Feb 24;13(7):8285-8293
pubmed: 33586429
ACS Cent Sci. 2019 Nov 27;5(11):1884-1891
pubmed: 31807690
Biomaterials. 2008 Jan;29(1):47-57
pubmed: 17915309
Mater Sci Eng C Mater Biol Appl. 2021 Feb;121:111857
pubmed: 33579489
Bioact Mater. 2017 Dec 28;3(3):322-333
pubmed: 29744469
Sci Rep. 2017 Nov 21;7(1):15885
pubmed: 29162871
J Biomech Eng. 2021 Jul 1;143(7):
pubmed: 33625495
Adv Sci (Weinh). 2021 Jul;8(14):e2101233
pubmed: 34014619
Acta Biomater. 2007 Jul;3(4):457-62
pubmed: 17321810
J Colloid Interface Sci. 2018 Jul 1;521:24-32
pubmed: 29547786
Proc Inst Mech Eng H. 2018 Apr;232(4):323-343
pubmed: 29506427
Acc Chem Res. 2018 May 15;51(5):988-998
pubmed: 29664613
Adv Mater. 2020 Dec;32(51):e2002180
pubmed: 32930437

Auteurs

Adeela Hanif (A)

School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea.

Gargi Ghosh (G)

School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea.

Montri Meeseepong (M)

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea.

Hamna Haq Chouhdry (H)

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea.

Atanu Bag (A)

School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea.

M V Chinnamani (MV)

School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea.

Surjeet Kumar (S)

School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea.

Muhammad Junaid Sultan (MJ)

School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea.

Anupama Yadav (A)

School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea.

Nae-Eung Lee (NE)

School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea.
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea.
Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea.

Classifications MeSH