The Surface Characterisation of Fused Filament Fabricated (FFF) 3D Printed PEEK/Hydroxyapatite Composites.
3D printing
PEEK
ToFSIMS
XPS
additive manufacturing
advanced composite materials
fused filament fabrication
hydroxyapatite
in vitro
polyetheretherketone
Journal
Polymers
ISSN: 2073-4360
Titre abrégé: Polymers (Basel)
Pays: Switzerland
ID NLM: 101545357
Informations de publication
Date de publication:
15 Sep 2021
15 Sep 2021
Historique:
received:
23
07
2021
revised:
06
09
2021
accepted:
13
09
2021
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
29
9
2021
Statut:
epublish
Résumé
Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer which has found increasing application in orthopaedics and has shown a lot of promise for 'made-to-measure' implants via additive manufacturing approaches. However, PEEK is bioinert and needs to undergo surface modification to make it at least osteoconductive to ensure a more rapid, improved, and stable fixation that will last longer in vivo. One approach to solving this issue is to modify PEEK with bioactive agents such as hydroxyapatite (HA). The work reported in this study demonstrates the direct 3D printing of PEEK/HA composites of up to 30 weight percent (wt%) HA using a Fused Filament Fabrication (FFF) approach. The surface characteristics and in vitro properties of the composite materials were investigated. X-ray diffraction revealed the samples to be semi-crystalline in nature, with X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry revealing HA materials were available in the uppermost surface of all the 3D printed samples. In vitro testing of the samples at 7 days demonstrated that the PEEK/HA composite surfaces supported the adherence and growth of viable U-2 OS osteoblast like cells. These results demonstrate that FFF can deliver bioactive HA on the surface of PEEK bio-composites in a one-step 3D printing process.
Identifiants
pubmed: 34578018
pii: polym13183117
doi: 10.3390/polym13183117
pmc: PMC8471434
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : European Commission
ID : N/A
Références
Biomaterials. 2014 Aug;35(25):6758-75
pubmed: 24835045
Sci Rep. 2016 Mar 09;6:22832
pubmed: 26956660
J Biomed Mater Res B Appl Biomater. 2020 Aug;108(6):2513-2527
pubmed: 32052943
Biomaterials. 2009 Aug;30(23-24):3810-7
pubmed: 19427032
Polymers (Basel). 2020 Jul 27;12(8):
pubmed: 32726994
ACS Appl Mater Interfaces. 2016 Feb 17;8(6):3901-11
pubmed: 26796319
J Biomater Appl. 2009 Aug;24(2):105-18
pubmed: 18757493
J Spine Surg. 2017 Sep;3(3):433-443
pubmed: 29057355
Mater Sci Eng C Mater Biol Appl. 2015 Mar;48:592-8
pubmed: 25579962
J Mech Behav Biomed Mater. 2021 Sep;121:104601
pubmed: 34077906
J Bone Oncol. 2018 Aug 02;12:78-82
pubmed: 30123734
J Clin Med. 2019 May 31;8(6):
pubmed: 31159171
J Appl Biomater Funct Mater. 2017 Jan-Mar;15(1):10-18
pubmed: 28134971
J Biomed Mater Res A. 2008 Dec 15;87(4):896-902
pubmed: 18228252
J Mech Behav Biomed Mater. 2020 Sep;109:103850
pubmed: 32543413
ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12214-25
pubmed: 25013988
Int J Biomater. 2016;2016:8202653
pubmed: 27127513
Int J Nanomedicine. 2012;7:1215-25
pubmed: 22419869
Biomaterials. 2005 May;26(15):2343-52
pubmed: 15585237
J Biomed Mater Res A. 2009 Dec 15;91(4):1018-27
pubmed: 19107791
ACS Omega. 2019 Nov 05;4(21):19238-19245
pubmed: 31763547
Biomaterials. 2018 Jul;170:116-126
pubmed: 29660634
J Mech Behav Biomed Mater. 2021 Jun;118:104475
pubmed: 33773239
Colloids Surf B Biointerfaces. 2018 May 3;169:176-182
pubmed: 29772473
Mater Sci Eng C Mater Biol Appl. 2017 Mar 1;72:576-582
pubmed: 28024624
RSC Adv. 2019 Mar 29;9(18):10081-10090
pubmed: 35520933
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1679-1693
pubmed: 28025653
Polymers (Basel). 2021 Feb 12;13(4):
pubmed: 33673299
J Orthop Surg Res. 2019 Jan 25;14(1):32
pubmed: 30683125
Molecules. 2016 May 26;21(6):
pubmed: 27240326
Acta Biomater. 2013 Apr;9(4):6177-87
pubmed: 23212079