Tailoring the Random Lasing Properties by Controlled Phase Separation Process in PMMA:PVK Dye-Doped Polymeric Blends.

PMMA PVK double-phase system dye laser morphology phase separation polymeric blend quasi-waveguiding random laser rhodamine 6g waveguiding

Journal

Polymers
ISSN: 2073-4360
Titre abrégé: Polymers (Basel)
Pays: Switzerland
ID NLM: 101545357

Informations de publication

Date de publication:
19 Sep 2021
Historique:
received: 25 08 2021
revised: 15 09 2021
accepted: 16 09 2021
entrez: 28 9 2021
pubmed: 29 9 2021
medline: 29 9 2021
Statut: epublish

Résumé

This article describes the random lasing (RL) phenomenon obtained in a dye-doped, polymeric double-phase system composed of PMMA and PVK polymers. It shows how relative concentrations between mentioned macromolecules can influence lasing parameters of the resulting blends, including obtained emission spectra and threshold conditions. We describe the influence of lasers' composition on their morphologies and link them with particular RL properties. Our studies reveal that the disorder caused by phase separation can support the RL phenomenon both in the waveguiding and quasi-waveguiding regimes. Changing the relative concentration of polymers enables one to switch between both regimes, which significantly influences threshold conditions, spectral shift, number of lasing modes, and ability to support extended and/or localized modes. Finally, we show that a simple phase separation technique can be used to fabricate efficient materials for RL. Moreover, it enables the tailoring of lasing properties of materials in a relatively wide range at the stage of the laser material fabrication process in a simple way. Therefore, this technique can be seen as a fast, cheap, and easy to perform way of random lasers fabrication.

Identifiants

pubmed: 34578083
pii: polym13183182
doi: 10.3390/polym13183182
pmc: PMC8467720
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : Narodowym Centrum Nauki
ID : 2016/23/D/ST5/00278

Références

J Phys Chem B. 2010 Apr 8;114(13):4725-30
pubmed: 20222703
Opt Lett. 2009 Dec 15;34(24):3764-6
pubmed: 20016606
Polymers (Basel). 2019 Apr 03;11(4):
pubmed: 30960602
Nanoscale Horiz. 2017 Sep 1;2(5):261-266
pubmed: 32260681
Phys Chem Chem Phys. 2018 Aug 1;20(30):19958-19963
pubmed: 30022203
Rev Sci Instrum. 2007 Jan;78(1):013705
pubmed: 17503926
Light Sci Appl. 2020 Feb 11;9:19
pubmed: 32128159
Opt Express. 2011 Aug 15;19(17):16126-31
pubmed: 21934975
Opt Express. 2016 May 2;24(9):9325-31
pubmed: 27137548
Adv Opt Mater. 2020 Nov 18;8(22):2001039
pubmed: 33365226
Prog Polym Sci. 2013 Dec;38(12):1929-1940
pubmed: 24302787
ACS Omega. 2017 Jun 01;2(6):2415-2421
pubmed: 31457590
Nano Lett. 2006 Oct;6(10):2211-4
pubmed: 17034085
Chem Soc Rev. 2015 Aug 7;44(15):5076-91
pubmed: 25856171
ACS Appl Mater Interfaces. 2020 Jan 15;12(2):2783-2792
pubmed: 31869205
Nanoscale. 2015 Oct 7;7(37):15091-8
pubmed: 26349545
ACS Photonics. 2016 Jun 15;3(6):919-923
pubmed: 27347494
J Phys Chem Lett. 2020 Feb 6;11(3):767-774
pubmed: 31934764

Auteurs

Konrad Cyprych (K)

Advanced Materials Engineering and Modeling Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.

Lech Sznitko (L)

Advanced Materials Engineering and Modeling Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.

Classifications MeSH