Development of soy-based nanocomposite film: Modeling for barrier and mechanical properties and its application as cheese slice separator.
cheese packaging
film properties
modeling
nanocomposite film
soybean aqueous extract
Journal
Journal of texture studies
ISSN: 1745-4603
Titre abrégé: J Texture Stud
Pays: England
ID NLM: 0252052
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
revised:
21
09
2021
received:
17
08
2021
accepted:
21
09
2021
pubmed:
29
9
2021
medline:
29
9
2021
entrez:
28
9
2021
Statut:
ppublish
Résumé
In the current study, soybean aqueous extract (SAE)-based nanocomposite film was developed by incorporating cellulose nanofiber (CNF) at various concentrations (0-10%). Effect of nanoreinforcement on essential properties of the nanocomposite film such as barrier, mechanical, water affinity, and optical properties were evaluated. Homogeneous films with improved barrier and mechanical properties were observed until 6% CNF, beyond which considerable reduction in desirable properties was noticed due to nanoparticle's agglomeration effect. Furthermore, the prediction of the mechanical and barrier properties of nanocomposite film was performed with mathematical models such as modified Halpin-Tsai and modified Nielsen equations, respectively. The model-fitting results reveal that the theoretically predicted values were in close agreement with the experimental values. Hence, these models were well suited for predicting respective properties. Model prediction also implies that the increase in the aspect ratio of fillers can considerably cause a reduction in water vapor permeability and improvement in mechanical properties. Suitability of developed film as cheese slice separator was evaluated: they had equivalent outcomes in terms of easiness in slice separation and wholeness of slices after separation compared to the commercial material.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
809-819Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Alavi, S., Thomas, S., Sandeep, K. P., Kalarikkal, N., Varghese, J., & Yaragalla, S. (2014). Polymers for packaging applications. New Jersey, USA: CRC Press.
Alipoormazandarani, N., Ghazihoseini, S., & Nafchi, A. M. (2015). Preparation and characterization of novel bionanocomposite based on soluble soybean polysaccharide and halloysitenanoclay. Carbohydrate Polymers, 134, 745-751. https://doi.org/10.1016/j.carbpol.2015.08.059
Al-Rub, R. K. A., Ashour, A. I., & Tyson, B. M. (2012). On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites. Construction and Building Materials, 35, 647-655. https://doi.org/10.1016/j.conbuildmat.2012.04.086
Alves, M. M., Gonçalves, M. P., & Rocha, C. M. R. (2017). Effect of ferulic acid on the performance of soy protein isolate-based edible coatings applied to fresh-cut apples. LWT - Food Science and Technology, 80, 409-415. https://doi.org/10.1016/j.lwt.2017.03.013
Bajić, M., Oberlintner, A., Kõrge, K., Likozar, B., & Novak, U. (2020). Formulation of active food packaging by design: Linking composition of the film-forming solution to properties of the chitosan-based film by response surface methodology (RSM) modelling. International Journal of Biological Macromolecules, 160, 971-978. https://doi.org/10.1016/j.ijbiomac.2020.05.186
Bharadwaj, R. K. (2001). Modeling the Barrier Properties of Polymer-Layered Silicate Nanocomposites. Macromolecules, 34(26), 9189-9192. http://dx.doi.org/10.1021/ma010780b
Chaichi, M., Hashemi, M., Badii, F., & Mohammadi, A. (2017). Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymers, 157, 167-175. https://doi.org/10.1016/j.carbpol.2016.09.062
Chao, Z., Yue, M., Xiaoyan, Z., & Dan, M. (2010). Development of soybean protein-isolate edible films incorporated with beeswax, span 20, and glycerol. Journal of Food Science, 75(6), 493-497. https://doi.org/10.1111/j.1750-3841.2010.01666.x
Chen, X., Cui, F., Zi, H., Zhou, Y., Liu, H., & Xiao, J. (2019). Development and characterization of a hydroxypropyl starch/zein bilayer edible film. International Journal of Biological Macromolecules, 141, 1175-1182. https://doi.org/10.1016/j.ijbiomac.2019.08.240
Cruz-Diaz, K., Cobos, Á., Fernández-Valle, M. E., Díaz, O., & Cambero, M. I. (2019). Characterization of edible films from whey proteins treated with heat, ultrasounds and/or transglutaminase. Application in cheese slices packaging. Food Packaging and Shelf Life, 22, 100397. https://doi.org/10.1016/j.fpsl.2019.100397
Echeverría, I., Eisenberg, P., & Mauri, A. N. (2014). Nanocomposites films based on soy proteins and montmorillonite processed by casting. Journal of Membrane Science, 449, 15-26. https://doi.org/10.1016/j.memsci.2013.08.006
Fernandes, L. M., Guimarães, J. T., Silva, R., Rocha, R. S., Coutinho, N. M., Balthazar, C. F., … Neto, R. P. (2020). Whey protein films added with galactooligosaccharide and xylooligosaccharide. Food Hydrocolloids, 104, 105755. https://doi.org/10.1016/j.foodhyd.2020.105755
Ghani, S., Barzegar, H., Noshad, M., & Hojjati, M. (2018). The preparation, characterization and in vitro application evaluation of soluble soybean polysaccharide films incorporated with cinnamon essential oil nanoemulsions. International Journal of Biological Macromolecules, 112, 197-202. https://doi.org/10.1016/j.ijbiomac.2018.01.145
Giri, S. K., & Mangaraj, S. (2012). Processing influences on composition and quality attributes of soymilk and its powder. Food Engineering Reviews, 4(3), 149-164. https://doi.org/10.1007/s12393-012-9053-0
Hassannia-Kolaee, M., Khodaiyan, F., & Shahabi-Ghahfarrokhi, I. (2016). Modification of functional properties of pullulan-whey protein bionanocomposite films with nanoclay. Journal of Food Science and Technology, 53(2), 1294-1302. https://doi.org/10.1007/s13197-015-1778-3
Karande, V. S., Bharimalla, A. K., Vigneshwaran, N., Kadam, P. G., & Mhaske, S. T. (2014). Cotton linter nano-fibers as the potential reinforcing agent for guar gum. Iranian Polymer Journal, 23(11), 869-879. https://doi.org/10.1007/s13726-014-0283-2
Kumari, N., Bangar, S. P., Petrů, M., Ilyas, R. A., Singh, A., & Kumar, P. (2021). Development and characterization of fenugreek protein-based edible film. Food, 10(9), 1976. https://doi.org/10.3390/foods10091976
Li, M., Tian, X., Jin, R., & Li, D. (2018). Preparation and characterization of nanocomposite films containing starch and cellulose nanofibers. Industrial Crops and Products, 123, 654-660. https://doi.org/10.1016/j.indcrop.2018.07.043
Li, Q., Zhou, J., & Zhang, L. (2009). Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. Journal of Polymer Science Part B: Polymer Physics, 47(11), 1069-1077. https://doi.org/10.1002/polb.21711
Li, Y., Jiang, Y., Liu, F., Ren, F., Zhao, G., & Leng, X. (2011). Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocolloids, 25(5), 1098-1104. https://doi.org/10.1016/j.foodhyd.2010.10.006
Liu, G., Song, Y., Wang, J., Zhuang, H., Ma, L., Li, C., … Zhang, J. (2014). Effects of nanoclay type on the physical and antimicrobial properties of PVOH-based nanocomposite films. LWT - Food Science and Technology, 57(2), 562-568. https://doi.org/10.1016/j.lwt.2014.01.009
Liu, X., Kang, H., Wang, Z., Zhang, W., Li, J., & Zhang, S. (2017). Simultaneously toughening and strengthening soy protein isolate-based composites via carboxymethylated chitosan and halloysite nanotube hybridization. Materials, 10(6), 653. https://doi.org/10.3390/ma10060653
Mahardika, M., Abral, H., Kasim, A., Arief, S., Hafizulhaq, F., & Asrofi, M. (2019). Properties of cellulose nanofiber/bengkoang starch bionanocomposites: Effect of fiber loading. LWT - Food Science and Technology, 116, 108554. https://doi.org/10.1016/j.lwt.2019.108554
Manepalli, P. H., & Alavi, S. (2019). Mathematical modeling of mechanical and barrier properties of poly (lactic acid)/poly (butylene adipate-co-terephthalate)/thermoplastic starch based nanocomposites. Journal of Food Engineering, 261, 60-65. https://doi.org/10.1016/j.jfoodeng.2019.04.004
Nandi, S., & Guha, P. (2018). Modelling the effect of guar gum on physical, optical, barrier and mechanical properties of potato starch based composite film. Carbohydrate Polymers, 200, 498-507. https://doi.org/10.1016/j.carbpol.2018.08.028
Nielsen Lawrence, E. (1967). Models for the Permeability of Filled Polymer Systems. Journal of Macromolecular Science: Part A - Chemistry, 1(5), 929-942. http://dx.doi.org/10.1080/10601326708053745
Orozco-Parra, J., Mejía, C. M., & Villa, C. C. (2020). Development of a bioactive synbiotic edible film based on cassava starch, inulin, and Lactobacillus casei. Food Hydrocolloids, 104, 105754. https://doi.org/10.1016/j.foodhyd.2020.105754
Oun, A. A., & Rhim, J.-W. (2015). Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydrate Polymers, 127, 101-109. https://doi.org/10.1016/j.carbpol.2015.03.073
Pacaphol, K., Seraypheap, K., & Aht-Ong, D. (2019). Development and application of nanofibrillated cellulose coating for shelf life extension of fresh-cut vegetable during postharvest storage. Carbohydrate Polymers, 224, 115167. https://doi.org/10.1016/j.carbpol.2019.115167
Pattanaik, S., Kumar Sutar, A., & Maharana, T. (2018). Graft copolymerization of soy protein isolate with polylactide via ring opening polymerization. IOP Conference Series: Materials Science and Engineering, 410, 012011. https://doi.org/10.1088/1757-899X/410/1/012011
Pereda, M., Amica, G., Rácz, I., & Marcovich, N. E. (2011). Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. Journal of Food Engineering, 103(1), 76-83. https://doi.org/10.1016/j.jfoodeng.2010.10.001
Qazanfarzadeh, Z., & Kadivar, M. (2016). Properties of whey protein isolate nanocomposite films reinforced with nanocellulose isolated from oat husk. International Journal of Biological Macromolecules, 91, 1134-1140. https://doi.org/10.1016/j.ijbiomac.2016.06.077
Saberi, B., Thakur, R., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2016). Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Industrial Crops and Products, 86, 342-352. https://doi.org/10.1016/j.indcrop.2016.04.015
Savadekar, N. R., Karande, V. S., Vigneshwaran, N., Bharimalla, A. K., & Mhaske, S. T. (2012). Preparation of nano cellulose fibers and its application in kappa-carrageenan based film. International Journal of Biological Macromolecules, 51(5), 1008-1013. https://doi.org/10.1016/j.ijbiomac.2012.08.014
Shankar, S., & Rhim, J.-W. (2016). Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydrate Polymers, 135, 18-26. https://doi.org/10.1016/j.carbpol.2015.08.082
Shih, Y.-T., & Zhao, Y. (2021). Development, characterization and validation of starch based biocomposite films reinforced by cellulose nanofiber as edible muffin liner. Food Packaging and Shelf Life, 28, 100655. https://doi.org/10.1016/j.fpsl.2021.100655
Syafri, E., Kasim, A., Abral, H., Sulungbudi, G. T., Sanjay, M. R., & Sari, N. H. (2018). Synthesis and characterization of cellulose nanofibers (CNF) ramie reinforced cassava starch hybrid composites. International Journal of Biological Macromolecules, 120, 578-586. https://doi.org/10.1016/j.ijbiomac.2018.08.134
Tan, B., & Thomas, N. L. (2017). Tortuosity model to predict the combined effects of crystallinity and nano-sized clay mineral on the water vapour barrier properties of polylactic acid. Applied Clay Science, 141, 46-54. https://doi.org/10.1016/j.clay.2017.02.014
Valizadeh, S., Naseri, M., Babaei, S., Hosseini, S. M. H., & Imani, A. (2019). Development of bioactive composite films from chitosan and carboxymethyl cellulose using glutaraldehyde, cinnamon essential oil and oleic acid. International Journal of Biological Macromolecules, 134, 604-612. https://doi.org/10.1016/j.ijbiomac.2019.05.071
Wu, Y. P., Jia, Q. X., Yu, D. S., & Zhang, L. Q. (2004). Modeling Young's modulus of rubber-clay nanocomposites using composite theories. Polymer Testing, 23(8), 903-909. https://doi.org/10.1016/j.polymertesting.2004.05.004
Xu, J., Xia, R., Yuan, T., & Sun, R. (2019). Use of xylooligosaccharides (XOS) in hemicelluloses/chitosan-based films reinforced by cellulose nanofiber: Effect on physicochemical properties. Food Chemistry, 298, 125041. https://doi.org/10.1016/j.foodchem.2019.125041
Zhai, L., Kim, H. C., Kim, J. W., Kang, J., & Kim, J. (2018). Elastic moduli of cellulose nanofibers isolated from various cellulose resources by using aqueous counter collision. Cellulose, 25(7), 4261-4268. https://doi.org/10.1007/s10570-018-1836-x
Zhang, W., & Jiang, W. (2020). Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method. International Journal of Biological Macromolecules, 155, 1252-1261. https://doi.org/10.1016/j.ijbiomac.2019.11.093
Zhang, W., Zhang, Y., Cao, J., & Jiang, W. (2021). Improving the performance of edible food packaging films by using nanocellulose as an additive. International Journal of Biological Macromolecules, 166, 288-296. https://doi.org/10.1016/j.ijbiomac.2020.10.185
Zhao, J., He, X., Wang, Y., Zhang, W., Zhang, X., Zhang, X., … Lu, C. (2014). Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils. Carbohydrate Polymers, 104, 143-150. https://doi.org/10.1016/j.carbpol.2014.01.007