Personalized prediction of progression in pre-dementia patients based on individual biomarker profile: A development and validation study.


Journal

Alzheimer's & dementia : the journal of the Alzheimer's Association
ISSN: 1552-5279
Titre abrégé: Alzheimers Dement
Pays: United States
ID NLM: 101231978

Informations de publication

Date de publication:
12 2021
Historique:
revised: 24 03 2021
received: 11 12 2020
accepted: 01 04 2021
pubmed: 29 9 2021
medline: 11 2 2022
entrez: 28 9 2021
Statut: ppublish

Résumé

The prognosis of patients at the pre-dementia stage is difficult to define. The aim of this study is to develop and validate a biomarker-based continuous model for predicting the individual cognitive level at any future moment. In addition to personalized prognosis, such a model could reduce trial sample size requirements by allowing inclusion of a homogenous patient population. Disease-progression modeling of longitudinal cognitive scores of pre-dementia patients (baseline Clinical Dementia Rating ≤ 0.5) was used to derive a biomarker profile that was predictive of patient's cognitive progression along the dementia continuum. The biomarker profile model was developed and validated in the MEMENTO cohort and externally validated in the Alzheimer's Disease Neuroimaging Initiative. Of nine candidate biomarkers in the development analysis, three cerebrospinal fluid and two magnetic resonance imaging measures were selected to form the final biomarker profile. The model-based prognosis of individual future cognitive deficit was shown to significantly improve when incorporating biomarker information on top of cognition and demographic data. In trial power calculations, adjusting the primary analysis for the baseline biomarker profile reduced sample size requirements by ≈10%. Compared to conventional cognitive cut-offs, inclusion criteria based on biomarker-profile cut-offs resulted in up to 28% reduced sample size requirements due to increased homogeneity in progression patterns. The biomarker profile allows prediction of personalized trajectories of future cognitive progression. This enables accurate personalized prognosis in clinical care and better selection of patient populations for clinical trials. A web-based application for prediction of patients' future cognitive progression is available online.

Identifiants

pubmed: 34581496
doi: 10.1002/alz.12363
doi:

Substances chimiques

Amyloid 0
Biomarkers 0
tau Proteins 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Validation Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

1938-1949

Subventions

Organisme : Medical Research Council
ID : MR/L023784/2
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : U01 AG024904
Pays : United States
Organisme : CIHR
Pays : Canada

Informations de copyright

© 2021 the Alzheimer's Association.

Références

Ballard C, Atri A, Boneva N, et al. Enrichment factors for clinical trials in mild-to-moderate Alzheimer's disease. Alzheimers Dement (N Y). 2019;5:164-174.
Teri L, McCurry SM, Edland SD, Kukull WA, Larson EB. Cognitive decline in Alzheimer's disease: a longitudinal investigation of risk factors for accelerated decline. J Gerontol A Biol Sci Med Sci. 1995;50A(1):M49-M55.
Raket LL. Statistical disease progression modeling in Alzheimer disease. Front Big Data. 2020;3:24.
Insel PS, Weiner M, Mackin RS, et al. Determining clinically meaningful decline in preclinical Alzheimer disease. Neurology. 2019;93(4):e322-e333.
Holland D, McEvoy LK, Desikan RS, Dale AM. Alzheimer's Disease Neuroimaging I. Enrichment and stratification for predementia Alzheimer disease clinical trials. PLoS One. 2012;7(10):e47739.
Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982;140:566-572.
Forester BP, Patrick RE, Harper DG. Setbacks and opportunities in disease-modifying therapies in Alzheimer disease. JAMA Psychiatry. 2019.
Mattsson-Carlgren N, Leuzy A, Janelidze S, et al. The implications of different approaches to define AT(N) in Alzheimer disease. Neurology. 2020;94(21):2233-2244.
Adak S, Illouz K, Gorman W, et al. Predicting the rate of cognitive decline in aging and early Alzheimer disease. Neurology. 2004;63(1):108-114.
Kester MI, van der Vlies AE, Blankenstein MA, et al. CSF biomarkers predict rate of cognitive decline in Alzheimer disease. Neurology. 2009;73(17):1353-1358.
Mattsson N, Palmqvist S, Stomrud E, Vogel J, Hansson O. Staging beta-amyloid pathology with amyloid positron emission tomography. JAMA Neurol. 2019.
Sørensen L, Igel C, Pai A, et al. Differential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry. Neuroimage Clin. 2016;13:470-482.
Marinescu R, Oxtoby N, Young A, et al. The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up; 2020.
Ewers M, Sperling RA, Klunk WE, Weiner MW, Hampel H. Neuroimaging markers for the prediction and early diagnosis of Alzheimer's disease dementia. Trends Neurosci. 2011;34(8):430-442.
Prestia A, Caroli A, van der Flier WM, et al. Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease. Neurology. 2013;80(11):1048-1056.
Brookmeyer R, Abdalla N, Kawas CH, Corrada MM. Forecasting the prevalence of preclinical and clinical Alzheimer's disease in the United States. Alzheimers Dement. 2018;14(2):121-129.
Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018;14(4):535-562.
Jack CR Jr, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207-216.
Mattsson-Carlgren N, Leuzy A, Janelidze S, et al. The implications of different approaches to define AT(N) in Alzheimer disease. Neurology. 2020;94(21):E2233-E2244.
van Maurik IS, Vos SJ, Bos I, et al. Biomarker-based prognosis for people with mild cognitive impairment (ABIDE): a modelling study. Lancet Neurol. 2019;18(11):1034-1044.
Cullen NC, Leuzy A, Palmqvist S, et al. Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations. Nat Aging. 2021;1:114-123.
Donohue MC, Jacqmin-Gadda H, Le Goff M, et al. Estimating long-term multivariate progression from short-term data. Alzheimers Dement. 2014;10:400-410.
Li D, Iddi S, Thompson WK, Donohue MC. Bayesian latent time joint mixed effect models for multicohort longitudinal data. Stat Methods Med Res. 2019;28(3):835-845.
Jedynak BM, Liu B, Lang A, Gel Y, Prince JL. A computational method for computing an Alzheimer's disease progression score; experiments and validation with the ADNI data set. Neurobiol aging. 2015;36:S178-S184.
Dufouil C, Dubois B, Vellas B, et al. Cognitive and imaging markers in non-demented subjects attending a memory clinic: study design and baseline findings of the MEMENTO cohort. Alzheimers Res Ther. 2017;9(1):67.
Chupin M, Hammers A, Liu RS, et al. Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: method and validation. Neuroimage. 2009;46(3):749-761.
Jack CR Jr, Wiste HJ, Weigand SD, et al. Defining imaging biomarker cut points for brain aging and Alzheimer's disease. Alzheimers Dement. 2017;13(3):205-216.
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189-198.
Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control. 1974;19(6):716-723.
Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer's disease. Am J Psychiatry 1984;141(11):1356-1364.
Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2020;324(8):772-781.
Janelidze S, Mattsson N, Palmqvist S, et al. Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat Med. 2020;26(3):379-386.
Mattsson N, Cullen NC, Andreasson U, Zetterberg H, Blennow K. Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2019;76:791-799.
Tombaugh TN, McIntyre NJ. The mini-mental state examination: a comprehensive review. J Am Geriatr Soc. 1992;40(9):922-935.
Preische O, Schultz SA, Apel A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease. Nat Med. 2019;25(2):277-283.
Alber J, Alladi S, Bae HJ, et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): knowledge gaps and opportunities. Alzheimers Dement (N Y). 2019;5:107-117.
Sweeney MD, Montagne A, Sagare AP, et al. Vascular dysfunction-The disregarded partner of Alzheimer's disease. Alzheimers Dement. 2019;15(1):158-167.

Auteurs

Line Kühnel (L)

H. Lundbeck A/S, Copenhagen, Denmark.
Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark.

Vincent Bouteloup (V)

Inserm, Population Health Research Center, University of Bordeaux, Bordeaux, France.
CHU de Bordeaux, Pole Santé Publique, Talence, France.

Jérémie Lespinasse (J)

Inserm, Population Health Research Center, University of Bordeaux, Bordeaux, France.
CHU de Bordeaux, Pole Santé Publique, Talence, France.

Geneviève Chêne (G)

Inserm, Population Health Research Center, University of Bordeaux, Bordeaux, France.
CHU de Bordeaux, Pole Santé Publique, Talence, France.

Carole Dufouil (C)

Inserm, Population Health Research Center, University of Bordeaux, Bordeaux, France.
CHU de Bordeaux, Pole Santé Publique, Talence, France.

José Luis Molinuevo (JL)

H. Lundbeck A/S, Copenhagen, Denmark.

Lars Lau Raket (LL)

H. Lundbeck A/S, Copenhagen, Denmark.
Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH