Fetal Lung Tissue Engineering.
Decellularization
Extracellular matrix
Regenerated lung
Tissue engineering
Journal
Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
1
10
2021
Statut:
ppublish
Résumé
Lung transplantation may be considered as a final treatment option for diseases such as chronic lung disease, pulmonary hypertension, bronchopulmonary dysplasia, pulmonary fibrosis, and end-stage lung disease. The five-year survival rate of lung transplants is nearly 50%. Unfortunately, many patients will die before a suitable lung donor can be found. Importantly, the shortage of donor organs has been a significant problem in lung transplantation. The tissue engineering approach uses de- and recellularization of lung tissue to create functional lung substitutes to overcome donor lung limitations. Decellularization is hope for generating an intact ECM in the development of the engineered lung. The goal of decellularization is to prepare a suitable scaffold of lung tissue that contains an appropriate framework for the functionality of regenerated lung tissue. In this chapter, we aim to describe the decellularization protocols for lung tissue regenerative purposes.
Identifiants
pubmed: 34582011
doi: 10.1007/978-3-030-82735-9_3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
17-33Informations de copyright
© 2021. Springer Nature Switzerland AG.
Références
Androjna C et al (2008) Oxygen diffusion through natural extracellular matrices: implications for estimating “critical thickness” values in tendon tissue engineering. Tissue Eng Part A 14(4):559–569
doi: 10.1089/tea.2006.0361
Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53
doi: 10.1146/annurev-bioeng-071910-124743
Balestrini JL et al (2016) Comparative biology of decellularized lung matrix: implications of species mismatch in regenerative medicine. Biomaterials 102:220–230
doi: 10.1016/j.biomaterials.2016.06.025
Bergman I, Loxley R (1970) The determination of hydroxyproline in urine hydrolysates. Clin Chim Acta 27(2):347–349
doi: 10.1016/0009-8981(70)90355-4
Birchall M, Macchiarini P (2008) Airway transplantation: a debate worth having? Transplantation 85(8):1075–1080
doi: 10.1097/TP.0b013e31816a10e4
Bombelli S et al (2018) Nephrosphere-derived cells are induced to multilineage differentiation when cultured on human decellularized kidney scaffolds. Am J Pathol 188(1):184–195
doi: 10.1016/j.ajpath.2017.09.012
Booth AJ et al (2012) Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am J Respir Crit Care Med 186(9):866–876
doi: 10.1164/rccm.201204-0754OC
Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243
doi: 10.1016/j.biomaterials.2011.01.057
Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683
pubmed: 16519932
Gilpin SE et al (2014) Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J Heart Lung Transplant 33(3):298–308
doi: 10.1016/j.healun.2013.10.030
Gilpin SE et al (2016) Bioengineering lungs for transplantation. Thorac Cardiovasc Surg 26(2):163–171
Jensen T et al (2012) A rapid lung de-cellularization protocol supports embryonic stem cell differentiation in vitro and following implantation. Tissue Eng Part C Methods 18(8):632–646
doi: 10.1089/ten.tec.2011.0584
Kajbafzadeh A et al (2015) Lung tissue engineering and preservation of alveolar microstructure using a novel casting method. Biotech Histochem 90(2):111–123
doi: 10.3109/10520295.2014.957724
Kocyildirim E et al (2004) Long-segment tracheal stenosis: slide tracheoplasty and a multidisciplinary approach improve outcomes and reduce costs. J Thorac Cardiovasc Surg 128(6):876–882
doi: 10.1016/j.jtcvs.2004.07.008
Laird PW et al (1991) Simplified mammalian DNA isolation procedure. Nucleic Acids Res 19(15):4293
doi: 10.1093/nar/19.15.4293
Macchiarini P et al (2008) Clinical transplantation of a tissue-engineered airway. The Lancet 372(9655):2023–2030
doi: 10.1016/S0140-6736(08)61598-6
Nakayama KH et al (2011) Renal tissue engineering with decellularized rhesus monkey kidneys: age-related differences. Tissue Eng Part A 17(23–24):2891–2901
doi: 10.1089/ten.tea.2010.0714
Nichols JE, Niles JA, Cortiella J (2009) Design and development of tissue engineered lung: progress and challenges. Organogenesis 5(2):57–61
doi: 10.4161/org.5.2.8564
Nichols JE et al (2013) Production and assessment of decellularized pig and human lung scaffolds. Tissue Eng Part A 19(17–18):2045–2062
doi: 10.1089/ten.tea.2012.0250
Nichols JE et al (2017) Giving new life to old lungs: methods to produce and assess whole human paediatric bioengineered lungs. J Tissue Eng Regen Med 11(7):2136–2152
doi: 10.1002/term.2113
Omori K et al (2005) Regenerative medicine of the trachea: the first human case. Ann Otol Rhinol Laryngol 114(6):429–433
doi: 10.1177/000348940511400603
O’Neill JD et al (2013) Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg 96(3):1046–1056
doi: 10.1016/j.athoracsur.2013.04.022
Orens JB, Garrity ER Jr (2009) General overview of lung transplantation and review of organ allocation. Proc Am Thorac Soc 6(1):13–19
doi: 10.1513/pats.200807-072GO
Petersen T (2009) In vitro development of engineered lung tissue
Petersen TH et al (2010) Tissue-engineered lungs for in vivo implantation. Science, p 1189345
Petersen TH et al (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991):538–541
doi: 10.1126/science.1189345
Petersen TH et al (2012) Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs 195(3):222–231
doi: 10.1159/000324896
Prakash Y, Tschumperlin DJ, Stenmark KR (2015) Coming to terms with tissue engineering and regenerative medicine in the lung. Am J Physiol Lung Cell Mol Physiol 309(7):L625–L638
doi: 10.1152/ajplung.00204.2015
Reichenspurner H (2005) Overview of tacrolimus-based immunosuppression after heart or lung transplantation. J Heart Lung Transplant 24(2):119–130
doi: 10.1016/j.healun.2004.02.022
Shahri NM et al (2013) In vitro decellularization of rabbit lung tissue. Cell J (yakhteh) 15(1):83
Skolasinski S, Panoskaltsis-Mortari A (2017) Decellularization of intact lung tissue through vasculature and airways using negative and positive pressure. Decellularized scaffolds and organogenesis. Springer, Berlin, pp 307–315
doi: 10.1007/7651_2017_32
Smith J et al (2014) Organ procurement and transplantation network (OPTN) and scientific registry of transplant recipients (SRTR). OPTN/SRTR 2012 annual data report. Am J Transplant 14(suppl 1):97–111
Tebyanian H et al (2019) Rat lung decellularization using chemical detergents for lung tissue engineering. Biotech Histochem 94(3):214–222
doi: 10.1080/10520295.2018.1544376
Uhl FE, Wagner DE, Weiss DJ (2017) Preparation of decellularized lung matrices for cell culture and protein analysis. Fibrosis. Springer, Berlin, pp 253–283
doi: 10.1007/978-1-4939-7113-8_18
Vertrees RA et al (2008) Cellular differentiation in three-dimensional lung cell cultures. Cancer Biol Ther 7(3):404–411
doi: 10.4161/cbt.7.3.5368
Wagner DE et al (2014) Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration. Biomaterials 35(9):2664–2679
doi: 10.1016/j.biomaterials.2013.11.078
Wainwright D (1995) Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 21(4):243–248
doi: 10.1016/0305-4179(95)93866-I