Cardiac Extracellular Matrix as a Platform for Heart Organ Bioengineering: Design and Development of Tissue-Engineered Heart.


Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2021
Historique:
entrez: 28 9 2021
pubmed: 29 9 2021
medline: 1 10 2021
Statut: ppublish

Résumé

The field of tissue engineering and regenerative medicine is able to depict the mechanism of cardiac repair and development of cardiac function as well, in order to reveal findings to new therapeutic designs for clinical treatment. The foremost approach of this scientific field is the fabrication of scaffolds, which contain cells that can be used as cardiac grafts in the body, to have the preferred recovery. Cardiac tissue engineering has not been completely organized for routine clinical usages. Hence, engineering innovations hold promise to character research and treatment options in the years to come. Our group has extensive experience with regard to the structure of the heart, which makes us to our decision to continue with the preparation of heart, with the aim of developing a new ECM scaffold. Herein, we aim to assess the state-of-the-art fabrication methods, advances in decellularization and recellularization techniques. We also highlight the major achievements toward the production of a bioengineered heart obtained from decellularization and recellularization techniques.

Identifiants

pubmed: 34582013
doi: 10.1007/978-3-030-82735-9_5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

47-59

Informations de copyright

© 2021. Springer Nature Switzerland AG.

Références

Akbarzadeh A, Khorramirouz R, Ghorbani F, Beigi RSH, Hashemi J, Kajbafzadeh AM (2019) Preparation and characterization of human size whole heart for organ engineering: scaffold microangiographic imaging. Regen Med 14(10):939–954. https://doi.org/10.2217/rme-2018-0111
doi: 10.2217/rme-2018-0111 pubmed: 31592738
Akhyari P, Aubin H, Gwanmesia P, Barth M, Hoffmann S, Huelsmann J et al (2011) The quest for an optimized protocol for whole-heart decellularization: a comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Eng Part C Methods 17(9):915–926. https://doi.org/10.1089/ten.TEC.2011.0210
doi: 10.1089/ten.TEC.2011.0210 pubmed: 21548726
Alagarsamy KN, Yan W, Srivastava A, Desiderio V, Dhingra S (2019) Application of injectable hydrogels for cardiac stem cell therapy and tissue engineering. Rev Cardiovasc Med 20(4):221–230. https://doi.org/10.31083/j.rcm.2019.04.534
doi: 10.31083/j.rcm.2019.04.534 pubmed: 31912713
Allegue C, Gil R, Blanco-Verea A, Santori M, Rodríguez-Calvo M, Concheiro L et al (2011) Prevalence of HCM and long QT syndrome mutations in young sudden cardiac death-related cases. Int J Legal Med 125(4):565–572. https://doi.org/10.1007/s00414-011-0572-7
doi: 10.1007/s00414-011-0572-7 pubmed: 21499742
Aquila I, Marino F, Cianflone E, Marotta P, Torella M, Mollace V et al (2018) The use and abuse of Cre/Lox recombination to identify adult cardiomyocyte renewal rate and origin. Pharmacol Res 127:116–128. https://doi.org/10.1016/j.phrs.2017.06.012
doi: 10.1016/j.phrs.2017.06.012 pubmed: 28655642
Aslani S, Kabiri M, HosseinZadeh S, Hanaee-Ahvaz H, Taherzadeh ES, Soleimani M (2020) The applications of heparin in vascular tissue engineering. Microvasc Res 104027
Baheiraei N, Yeganeh H, Ai J, Gharibi R, Azami M, Faghihi F (2014) Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Mater Sci Eng, C Mater Biol Appl 44:24–37. https://doi.org/10.1016/j.msec.2014.07.061
doi: 10.1016/j.msec.2014.07.061
Barker RA, Carpenter MK, Forbes S, Goldman SA, Jamieson C, Murry CE et al (2018) The challenges of first-in-human stem cell clinical trials: what does this mean for ethics and institutional review boards? Stem Cell Reports. 10(5):1429–1431
doi: 10.1016/j.stemcr.2018.04.010
Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR et al (2017) Heart disease and stroke statistics—2017 update: a report from the American heart association. Circulation. 135(10):e146
Bertuoli PT, Ordoño J, Armelin E, Pérez-Amodio S, Baldissera AF, Ferreira CA et al (2019) Electrospun conducting and biocompatible uniaxial and Core-Shell fibers having poly (lactic acid), poly (ethylene glycol), and polyaniline for cardiac tissue engineering. ACS Omega 4(2):3660–3672
doi: 10.1021/acsomega.8b03411
Bhutani S, Nachlas AL, Brown ME, Pete T, Johnson CT, García AJ et al (2018) Evaluation of hydrogels presenting extracellular matrix-derived adhesion peptides and encapsulating cardiac progenitor cells for cardiac repair. ACS Biomater Sci Eng 4(1):200–210
doi: 10.1021/acsbiomaterials.7b00502
Birket MJ, Ribeiro MC, Kosmidis G, Ward D, Leitoguinho AR, van de Pol V et al (2015) Contractile defect caused by mutation in MYBPC3 revealed under conditions optimized for human PSC-cardiomyocyte function. Cell Rep 13(4):733–745. https://doi.org/10.1016/j.celrep.2015.09.025
doi: 10.1016/j.celrep.2015.09.025 pubmed: 26489474 pmcid: 4644234
Blondiaux E, Pidial L, Autret G, Rahmi G, Balvay D, Audureau E et al (2017) Bone marrow-derived mesenchymal stem cell-loaded fibrin patches act as a reservoir of paracrine factors in chronic myocardial infarction. J Tissue Eng Regen Med 11(12):3417–3427. https://doi.org/10.1002/term.2255
doi: 10.1002/term.2255 pubmed: 28156084
Bonenfant NR, Sokocevic D, Wagner DE, Borg ZD, Lathrop MJ, Lam YW et al (2013) The effects of storage and sterilization on de-cellularized and re-cellularized whole lung. Biomaterials 34(13):3231–3245. https://doi.org/10.1016/j.biomaterials.2013.01.031
doi: 10.1016/j.biomaterials.2013.01.031 pubmed: 23380353 pmcid: 4201372
Bruder L, Spriestersbach H, Brakmann K, Stegner V, Sigler M, Berger F et al (2018) Transcatheter decellularized tissue-engineered heart valve (dTEHV) grown on polyglycolic acid (PGA) scaffold coated with P4HB shows improved functionality over 52 weeks due to polyether-ether-ketone (PEEK) insert. J Funct Biomater 9(4):64
doi: 10.3390/jfb9040064
Bui AL, Horwich TB, Fonarow GC (2011) Epidemiology and risk profile of heart failure. Nat Rev Cardiol 8(1):30–41. https://doi.org/10.1038/nrcardio.2010.165
doi: 10.1038/nrcardio.2010.165 pubmed: 21060326
Cardoso GB, Machado-Silva AB, Sabino M, Jr Santos AR, Zavaglia CA (2014) Novel hybrid membrane of chitosan/poly (ε-caprolactone) for tissue engineering. Biomatter. 4. https://doi.org/10.4161/biom.29508 .
Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R et al (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114(1 Suppl):I132–I137. https://doi.org/10.1161/circulationaha.105.001065
doi: 10.1161/circulationaha.105.001065 pubmed: 16820562
Chaudhry MA (2019) Heart failure. Curr Hypertens Rev 15(1):7. https://doi.org/10.2174/157340211501190129144451
doi: 10.2174/157340211501190129144451 pubmed: 30729894
Chen K, Vigliotti A, Bacca M, McMeeking RM, Deshpande VS, Holmes JW (2018) Role of boundary conditions in determining cell alignment in response to stretch. Proc Natl Acad Sci USA 115(5):986–991. https://doi.org/10.1073/pnas.1715059115
doi: 10.1073/pnas.1715059115 pubmed: 29343646 pmcid: 5798351
Christman KL, Lee RJ (2006) Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 48(5):907–913. https://doi.org/10.1016/j.jacc.2006.06.005
doi: 10.1016/j.jacc.2006.06.005 pubmed: 16949479
Cutts J, Nikkhah M, Brafman DA (2015) Biomaterial approaches for stem cell-based myocardial tissue engineering. Biomarker Insights. 10(Suppl 1):77–90. https://doi.org/10.4137/bmi.s20313
doi: 10.4137/bmi.s20313 pubmed: 26052226 pmcid: 4451817
Dainese L, Guarino A, Burba I, Esposito G, Pompilio G, Polvani G et al (2012) Heart valve engineering: decellularized aortic homograft seeded with human cardiac stromal cells. J Heart Valve Dis 21(1):125–134
pubmed: 22474754
Dolan EB, Hofmann B, de Vaal MH, Bellavia G, Straino S, Kovarova L et al (2019) A bioresorbable biomaterial carrier and passive stabilization device to improve heart function post-myocardial infarction. Mater Sci Eng: C 103:109751
Flaig F, Ragot Hln, Simon A, Revet Gl, Kitsara M, Kitasato L et al. (2020) Design of functional electrospun scaffolds based on poly (glycerol sebacate) elastomer and poly (lactic acid) for cardiac tissue engineering. ACS Biomater Sci Eng 6(4):2388–400
Frangogiannis NG (2016) The functional pluralism of fibroblasts in the infarcted myocardium. Am Heart Assoc
Gabriel LP, Rodrigues AA, Macedo M, Jardini AL, Maciel FR (2017) Electrospun polyurethane membranes for tissue engineering applications. Mater Sci Eng, C Mater Biol Appl 72:113–117. https://doi.org/10.1016/j.msec.2016.11.057
doi: 10.1016/j.msec.2016.11.057
Gao B, Matsuura K, Shimizu T (2019) Recent progress in induced pluripotent stem cell-derived cardiac cell sheets for tissue engineering. Biosci Trends 13(4):292–298. https://doi.org/10.5582/bst.2019.01227
doi: 10.5582/bst.2019.01227 pubmed: 31527326
Grauss RW, Hazekamp MG, van Vliet S, Gittenberger-de Groot AC, DeRuiter MC (2003) Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg 126(6):2003–2010. https://doi.org/10.1016/s0022-5223(03)00956-5
doi: 10.1016/s0022-5223(03)00956-5 pubmed: 14688719
Grauss RW, Hazekamp MG, Oppenhuizen F, van Munsteren CJ, Gittenberger-de Groot AC, DeRuiter MC (2005) Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg: Official J Eur Assoc Cardiothorac Surg 27(4):566–571. https://doi.org/10.1016/j.ejcts.2004.12.052
doi: 10.1016/j.ejcts.2004.12.052
Hansen KJ, Laflamme MA, Gaudette GR (2018) Development of a contractile cardiac fiber from pluripotent stem cell derived cardiomyocytes. Front Cardiovasc Med. 5:52. https://doi.org/10.3389/fcvm.2018.00052
doi: 10.3389/fcvm.2018.00052 pubmed: 29942806 pmcid: 6004416
Haraguchi Y, Shimizu T, Matsuura K, Sekine H, Tanaka N, Tadakuma K et al (2014) Cell sheet technology for cardiac tissue engineering. Methods Mol Biol (clifton, NJ) 1181:139–155. https://doi.org/10.1007/978-1-4939-1047-2_13
doi: 10.1007/978-1-4939-1047-2_13
Hashemi SM, Ghods S, Kolodgie FD, Parcham-Azad K, Keane M, Hamamdzic D et al (2008) A placebo controlled, dose-ranging, safety study of allogenic mesenchymal stem cells injected by endomyocardial delivery after an acute myocardial infarction. Eur Heart J 29(2):251–259. https://doi.org/10.1093/eurheartj/ehm559
doi: 10.1093/eurheartj/ehm559 pubmed: 18073226
Heallen TR, Martin JF (2018) Heart repair via cardiomyocyte-secreted vesicles. Nat Biomed Eng. 2(5):271–272
doi: 10.1038/s41551-018-0239-5
Hilbert SL, Yanagida R, Souza J, Wolfinbarger L, Jones AL, Krueger P et al (2004) Prototype anionic detergent technique used to decellularize allograft valve conduits evaluated in the right ventricular outflow tract in sheep. J Heart Valve Dis 13(5):831–840
pubmed: 15473487
Hirt MN, Hansen A, Eschenhagen T (2014) Cardiac tissue engineering: state of the art. Circ Res 114(2):354–367
doi: 10.1161/CIRCRESAHA.114.300522
Hoerstrup SP, Sodian R, Sperling JS, Vacanti JP, Mayer JE Jr (2000) New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng 6(1):75–79. https://doi.org/10.1089/107632700320919
doi: 10.1089/107632700320919 pubmed: 10941203
Hosoyama K, Ahumada M, McTiernan CD, Davis DR, Variola F, Ruel M et al (2018) Nanoengineered electroconductive collagen-based cardiac patch for infarcted myocardium repair. ACS Appl Mater Interfaces 10(51):44668–44677. https://doi.org/10.1021/acsami.8b18844
doi: 10.1021/acsami.8b18844 pubmed: 30508481
Huang D, Huang Y, Xiao Y, Yang X, Lin H, Feng G et al (2019) Viscoelasticity in natural tissues and engineered scaffolds for tissue reconstruction. Acta Biomater 97:74–92
doi: 10.1016/j.actbio.2019.08.013
Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Investig 107(11):1395–1402. https://doi.org/10.1172/jci12150
doi: 10.1172/jci12150 pubmed: 11390421 pmcid: 209322
Joshi J, Brennan D, Beachley V, Kothapalli CR (2018) Cardiomyogenic differentiation of human bone marrow-derived mesenchymal stem cell spheroids within electrospun collagen nanofiber mats. J Biomed Mater Res, Part A 106(12):3303–3312. https://doi.org/10.1002/jbm.a.36530
doi: 10.1002/jbm.a.36530
Kajbafzadeh AM, Ahmadi Tafti SH, Mokhber-Dezfooli MR, Khorramirouz R, Sabetkish S, Sabetkish N et al (2016) Aortic valve conduit implantation in the descending thoracic aorta in a sheep model: the outcomes of pre-seeded scaffold. Int J Surg (London, Engl) 28:97–105. https://doi.org/10.1016/j.ijsu.2016.02.061
doi: 10.1016/j.ijsu.2016.02.061
Kajbafzadeh AM, Tafti SHA, Khorramirouz R, Sabetkish S, Kameli SM, Orangian S et al (2017) Evaluating the role of autologous mesenchymal stem cell seeded on decellularized pericardium in the treatment of myocardial infarction: an animal study. Cell Tissue Banking 18(4):527–538. https://doi.org/10.1007/s10561-017-9629-2
doi: 10.1007/s10561-017-9629-2 pubmed: 28528367
Kajbafzadeh AM, Khorramirouz R, Kameli SM, Fendereski K, Daryabari SS, Tavangar SM et al (2019) Three-year efficacy and patency follow-up of decellularized human internal mammary artery as a novel vascular graft in animal models. J Thorac Cardiovasc Surg 157(4):1494–1502. https://doi.org/10.1016/j.jtcvs.2018.08.106
doi: 10.1016/j.jtcvs.2018.08.106 pubmed: 30396737
Kasimir MT, Weigel G, Sharma J, Rieder E, Seebacher G, Wolner E et al (2005) The decellularized porcine heart valve matrix in tissue engineering: platelet adhesion and activation. Thromb Haemost 94(3):562–567. https://doi.org/10.1160/th05-01-0025
doi: 10.1160/th05-01-0025 pubmed: 16268473
Keane TJ, Swinehart IT, Badylak SF (2015) Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods (san Diego, Calif). 84:25–34. https://doi.org/10.1016/j.ymeth.2015.03.005
doi: 10.1016/j.ymeth.2015.03.005
Kenar H, Ozdogan CY, Dumlu C, Doger E, Kose GT, Hasirci V (2019) Microfibrous scaffolds from poly (l-lactide-co-ε-caprolactone) blended with xeno-free collagen/hyaluronic acid for improvement of vascularization in tissue engineering applications. Mater Sci Eng, C 97:31–44
doi: 10.1016/j.msec.2018.12.011
Kharaziha M, Memic A, Akbari M, Brafman DA, Nikkhah M (2016) Nano-enabled approaches for stem cell-based cardiac tissue engineering. Adv Healthc Mater 5(13):1533–1553. https://doi.org/10.1002/adhm.201600088
doi: 10.1002/adhm.201600088 pubmed: 27199266
Khorramirouz R, Kameli SM, Fendereski K, Daryabari SS, Kajbafzadeh AM (2019) Evaluating the efficacy of tissue-engineered human amniotic membrane in the treatment of myocardial infarction. Regen Med 14(2):113–126. https://doi.org/10.2217/rme-2018-0024
doi: 10.2217/rme-2018-0024 pubmed: 30741604
Kretzschmar K, Post Y, Bannier-Hélaouët M, Mattiotti A, Drost J, Basak O et al (2018) Profiling proliferative cells and their progeny in damaged murine hearts. Proc Natl Acad Sci USA 115(52):E12245–E12254. https://doi.org/10.1073/pnas.1805829115
doi: 10.1073/pnas.1805829115 pubmed: 30530645 pmcid: 6310797
Laurie GW, Horikoshi S, Killen PD, Segui-Real B, Yamada Y (1989) In situ hybridization reveals temporal and spatial changes in cellular expression of mRNA for a laminin receptor, laminin, and basement membrane (type IV) collagen in the developing kidney. J Cell Biol 109(3):1351–1362. https://doi.org/10.1083/jcb.109.3.1351
doi: 10.1083/jcb.109.3.1351 pubmed: 2527859
Lee RT (2018) Adult cardiac stem cell concept and the process of science. Circulation 138(25):2940–2942. https://doi.org/10.1161/circulationaha.118.036407
doi: 10.1161/circulationaha.118.036407 pubmed: 30566005 pmcid: 6309906
Leyh RG, Wilhelmi M, Rebe P, Fischer S, Kofidis T, Haverich A et al (2003) In vivo repopulation of xenogeneic and allogeneic acellular valve matrix conduits in the pulmonary circulation. Ann Thorac Surg 75(5):1457–63; discussion 63. https://doi.org/10.1016/s0003-4975(02)04845-2 .
Li X, Tamama K, Xie X, Guan J (2016) Improving cell engraftment in cardiac stem cell therapy. Stem Cells Int 2016
Lim M, Wang W, Liang L, Han ZB, Li Z, Geng J et al (2018) Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction. Stem Cell Res Ther 9(1):129. https://doi.org/10.1186/s13287-018-0888-z
doi: 10.1186/s13287-018-0888-z pubmed: 29751831 pmcid: 5948807
Liu H, Wang Y, Cui K, Guo Y, Zhang X, Qin J (2019) Advances in hydrogels in organoids and organs-on-a-chip. Adv Mater 31(50):1902042
doi: 10.1002/adma.201902042
Maiullari F, Costantini M, Milan M, Pace V, Chirivì M, Maiullari S et al (2018) A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep 8(1):13532. https://doi.org/10.1038/s41598-018-31848-x
doi: 10.1038/s41598-018-31848-x pubmed: 30201959 pmcid: 6131510
Malandraki-Miller S, Lopez CA, Al-Siddiqi H, Carr CA (2018) Changing metabolism in differentiating cardiac progenitor cells—can stem cells become metabolically flexible cardiomyocytes? Front Cardiovasc Med. 5:119
doi: 10.3389/fcvm.2018.00119
Malone JM, Brendel K, Duhamel RC, Reinert RL (1984) Detergent-extracted small-diameter vascular prostheses. J Vasc Surg 1(1):181–191. https://doi.org/10.1067/mva.1984.avs0010181
doi: 10.1067/mva.1984.avs0010181 pubmed: 6481863
Mao C, Hou X, Wang B, Chi J, Jiang Y, Zhang C et al (2017) Intramuscular injection of human umbilical cord-derived mesenchymal stem cells improves cardiac function in dilated cardiomyopathy rats. Stem Cell Res Ther 8(1):18. https://doi.org/10.1186/s13287-017-0472-y
doi: 10.1186/s13287-017-0472-y pubmed: 28129792 pmcid: 5273808
Martinelli V, Bosi S, Peña B, Baj G, Long CS, Sbaizero O et al (2018) 3D carbon-nanotube-based composites for cardiac tissue engineering. ACS Appl Bio Mater 1(5):1530–1537
doi: 10.1021/acsabm.8b00440
Martins C, Sousa F, Araújo F, Sarmento B (2018) Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthcare Mater 7(1):1701035
doi: 10.1002/adhm.201701035
Mathiasen AB, Jørgensen E, Qayyum AA, Haack-Sørensen M, Ekblond A, Kastrup J (2012) Rationale and design of the first randomized, double-blind, placebo-controlled trial of intramyocardial injection of autologous bone-marrow derived mesenchymal stromal cells in chronic ischemic heart failure (MSC-HF Trial). Am Heart J 164(3):285–291. https://doi.org/10.1016/j.ahj.2012.05.026
doi: 10.1016/j.ahj.2012.05.026 pubmed: 22980293
Matsuura K, Masuda S, Shimizu T (2014) Cell sheet-based cardiac tissue engineering. Anat Rec (Hoboken, NJ: 2007). 297(1):65–72. https://doi.org/10.1002/ar.22834
McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS (2003) Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res, Part A 66(3):586–595. https://doi.org/10.1002/jbm.a.10504
doi: 10.1002/jbm.a.10504
Mewhort HE, Svystonyuk DA, Turnbull JD, Teng G, Belke DD, Guzzardi DG et al (2017) Bioactive extracellular matrix scaffold promotes adaptive cardiac remodeling and repair. JACC: Basic Transl Sci 2(4):450–64
Mirsadraee S, Wilcox HE, Korossis SA, Kearney JN, Watterson KG, Fisher J et al (2006) Development and characterization of an acellular human pericardial matrix for tissue engineering. Tissue Eng 12(4):763–773. https://doi.org/10.1089/ten.2006.12.763
doi: 10.1089/ten.2006.12.763 pubmed: 16674290
Miyagawa S, Domae K, Yoshikawa Y, Fukushima S, Nakamura T, Saito A et al (2017) Phase I clinical trial of autologous stem cell-sheet transplantation therapy for treating cardiomyopathy. J Am Heart Assoc 6(4). https://doi.org/10.1161/jaha.116.003918 .
Mohamed TM, Ang Y-S, Radzinsky E, Zhou P, Huang Y, Elfenbein A et al (2018) Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173(1):104–16, e12
Moore A, Mercer J, Dutina G, Donahue CJ, Bauer KD, Mather JP et al (1997) Effects of temperature shift on cell cycle, apoptosis and nucleotide pools in CHO cell batch cultues. Cytotechnology 23(1–3):47–54. https://doi.org/10.1023/a:1007919921991
doi: 10.1023/a:1007919921991 pubmed: 22358520 pmcid: 3449885
Muniyandi P, Palaninathan V, Veeranarayanan S, Ukai T, Maekawa T, Hanajiri T et al (2020) ECM mimetic electrospun porous poly (L-lactic acid)(PLLA) scaffolds as potential substrates for cardiac tissue engineering. Polymers 12(2):451
doi: 10.3390/polym12020451
Naderi H, Matin MM, Bahrami AR (2011) Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J Biomater Appl 26(4):383–417. https://doi.org/10.1177/0885328211408946
doi: 10.1177/0885328211408946 pubmed: 21926148
Neto MD, Oliveira MB, Mano JF (2019) Microparticles in contact with cells: from carriers to multifunctional tissue modulators. Trends Biotechnol 37(9):1011–1028
doi: 10.1016/j.tibtech.2019.02.008
Oberwallner B, Brodarac A, Choi YH, Saric T, Anić P, Morawietz L et al (2014) Preparation of cardiac extracellular matrix scaffolds by decellularization of human myocardium. J Biomed Mater Res, Part A 102(9):3263–3272. https://doi.org/10.1002/jbma.35000
doi: 10.1002/jbma.35000
O’Connor Mooney R, Davis NF, Hoey D, Hogan L, McGloughlin TM, Walsh MT (2016) On the automatic decellularisation of porcine aortae: a repeatability study using a non-enzymatic approach. Cells Tissues Organs 201(4):299–318. https://doi.org/10.1159/000445107
doi: 10.1159/000445107 pubmed: 27144773
Paez-Mayorga J, Hernández-Vargas G, Ruiz-Esparza GU, Iqbal HMN, Wang X, Zhang YS et al (2019) Bioreactors for cardiac tissue engineering. Adv Healthc Mater 8(7):e1701504. https://doi.org/10.1002/adhm.201701504
doi: 10.1002/adhm.201701504 pubmed: 29737043
Parikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L, Kim K et al (2017) Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ Res 121(12):1323–1330. https://doi.org/10.1161/circresaha.117.311920
doi: 10.1161/circresaha.117.311920 pubmed: 28974554 pmcid: 5722667
Perrino C, Ferdinandy P, Bøtker HE, Brundel B, Collins P, Davidson SM et al (2020) Improving translational research in sex-specific effects of comorbidities and risk factors in ischemic heart disease and cardioprotection: position paper and recommendations of the ESC working group on cellular biology of the heart. Cardiovasc Res. https://doi.org/10.1093/cvr/cvaa155
doi: 10.1093/cvr/cvaa155 pubmed: 32384145 pmcid: 7820844
Pushp P, Sahoo B, Ferreira FC, Sampaio Cabral JM, Fernandes-Platzgummer A, Gupta MK (2020) Functional comparison of beating cardiomyocytes differentiated from umbilical cord-derived mesenchymal/stromal stem cells and human foreskin-derived induced pluripotent stem cells. J Biomed Mater Res, Part A 108(3):496–514. https://doi.org/10.1002/jbm.a.36831
doi: 10.1002/jbm.a.36831
Radisic M, Park H, Chen F, Salazar-Lazzaro JE, Wang Y, Dennis R et al (2006) Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng 12(8):2077–2091
doi: 10.1089/ten.2006.12.2077
Revilla A, López J, Arnold R, Sánchez PL, Villa A, Pinedo M et al (2011) Long-term changes in left ventricular function following intracoronary stem cell transplantation for acute myocardial infarction. Rev Esp Cardiol 64(4):334–337. https://doi.org/10.1016/j.recesp.2010.06.009
doi: 10.1016/j.recesp.2010.06.009 pubmed: 21411206
Richards DJ, Tan Y, Coyle R, Li Y, Xu R, Yeung N et al (2016) Nanowires and electrical stimulation synergistically improve functions of hiPSC cardiac spheroids. Nano Lett 16(7):4670–4678. https://doi.org/10.1021/acs.nanolett.6b02093
doi: 10.1021/acs.nanolett.6b02093 pubmed: 27328393 pmcid: 4994528
Rikhtegar R, Pezeshkian M, Dolati S, Safaie N, Afrasiabi Rad A, Mahdipour M et al. Stem cells as therapy for heart disease: iPSCs, ESCs, CSCs, and skeletal myoblasts. Biomed Pharmacothe = Biomed Pharmacotherapie. 2019;109:304–13. https://doi.org/10.1016/j.biopha.2018.10.065 .
Rockwood DN, Akins RE Jr, Parrag IC, Woodhouse KA, Rabolt JF (2008) Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro. Biomaterials 29(36):4783–4791. https://doi.org/10.1016/j.biomaterials.2008.08.034
doi: 10.1016/j.biomaterials.2008.08.034 pubmed: 18823659 pmcid: 2642005
Sabetkish S, Kajbafzadeh AM, Sabetkish N, Khorramirouz R, Akbarzadeh A, Seyedian SL et al (2015) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix liver scaffolds. J Biomed Mater Res, Part A 103(4):1498–1508. https://doi.org/10.1002/jbm.a.35291
doi: 10.1002/jbm.a.35291
Sanz-Ruiz R, Fernández-Avilés F (2018) Autologous and allogeneic cardiac stem cell therapy for cardiovascular diseases. Pharmacol Res 127:92–100
doi: 10.1016/j.phrs.2017.05.024
Sawa Y, Miyagawa S (2013) Present and future perspectives on cell sheet-based myocardial regeneration therapy. Biomed Res Int 2013:583912. https://doi.org/10.1155/2013/583912
doi: 10.1155/2013/583912 pubmed: 24369013 pmcid: 3867859
Sawa Y, Miyagawa S, Sakaguchi T, Fujita T, Matsuyama A, Saito A et al (2012) Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today 42(2):181–184. https://doi.org/10.1007/s00595-011-0106-4
doi: 10.1007/s00595-011-0106-4 pubmed: 22200756
Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451(7181):937–942. https://doi.org/10.1038/nature06800
doi: 10.1038/nature06800 pubmed: 18288183
Sereti K-I, Nguyen NB, Kamran P, Zhao P, Ranjbarvaziri S, Park S et al (2018) Analysis of cardiomyocyte clonal expansion during mouse heart development and injury. Nat Commun 9(1):1–13
doi: 10.1038/s41467-018-02891-z
Shevach M, Fleischer S, Shapira A, Dvir T (2014) Gold nanoparticle-decellularized matrix hybrids for cardiac tissue engineering. Nano Lett 14(10):5792–5796
doi: 10.1021/nl502673m
Shiekh PA, Singh A, Kumar A (2018) Engineering bioinspired antioxidant materials promoting cardiomyocyte functionality and maturation for tissue engineering application. ACS Appl Mater Interfaces 10(4):3260–3273
doi: 10.1021/acsami.7b14777
Shimizu T, Yamato M, Kikuchi A, Okano T (2001) Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Eng 7(2):141–151. https://doi.org/10.1089/107632701300062732
doi: 10.1089/107632701300062732 pubmed: 11304450
Shimizu T, Yamato M, Kikuchi A, Okano T (2003) Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 24(13):2309–2316. https://doi.org/10.1016/s0142-9612(03)00110-8
doi: 10.1016/s0142-9612(03)00110-8 pubmed: 12699668
Singelyn JM, Sundaramurthy P, Johnson TD, Schup-Magoffin PJ, Hu DP, Faulk DM et al (2012) Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol 59(8):751–763. https://doi.org/10.1016/j.jacc.2011.10.888
doi: 10.1016/j.jacc.2011.10.888 pubmed: 22340268 pmcid: 3285410
Su T, Huang K, Daniele MA, Hensley MT, Young AT, Tang J et al (2018) Cardiac stem cell patch integrated with microengineered blood vessels promotes cardiomyocyte proliferation and neovascularization after acute myocardial infarction. ACS Appl Mater Interfaces 10(39):33088–33096. https://doi.org/10.1021/acsami.8b13571
doi: 10.1021/acsami.8b13571 pubmed: 30188113 pmcid: 6376980
Suncion VY, Ghersin E, Fishman JE, Zambrano JP, Karantalis V, Mandel N et al (2014) Does transendocardial injection of mesenchymal stem cells improve myocardial function locally or globally?: An analysis from the percutaneous stem cell injection delivery effects on neomyogenesis (POSEIDON) randomized trial. Circ Res 114(8):1292–1301. https://doi.org/10.1161/circresaha.114.302854
doi: 10.1161/circresaha.114.302854 pubmed: 24449819 pmcid: 4067050
Tang J, Sun GY, Chen T, Wang YD, Zhang J, Qi XQ (2016) Effect of intracoronary autologous bone marrow mononuclear cells transplantation on arrhythmia in canines. Zhonghua Xin Xue Guan Bing Za Zhi 44(12):1030–1035. https://doi.org/10.3760/cma.j.issn.0253-3758.2016.12.008
doi: 10.3760/cma.j.issn.0253-3758.2016.12.008 pubmed: 28056234
Tang J, Cui X, Caranasos TG, Hensley MT, Vandergriff AC, Hartanto Y et al (2017) Heart repair using nanogel-encapsulated human cardiac stem cells in mice and pigs with myocardial infarction. ACS Nano 11(10):9738–9749. https://doi.org/10.1021/acsnano.7b01008
doi: 10.1021/acsnano.7b01008 pubmed: 28929735 pmcid: 5656981
Tapias LF, Ott HC (2014) Decellularized scaffolds as a platform for bioengineered organs. Curr Opin Organ Transplant 19(2):145–152. https://doi.org/10.1097/mot.0000000000000051
doi: 10.1097/mot.0000000000000051 pubmed: 24480969 pmcid: 4568185
Tijore A, Irvine SA, Sarig U, Mhaisalkar P, Baisane V, Venkatraman S (2018) Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel. Biofabrication 10(2):025003. https://doi.org/10.1088/1758-5090/aaa15d
doi: 10.1088/1758-5090/aaa15d pubmed: 29235444
Tomecka E, Wojasinski M, Jastrzebska E, Chudy M, Ciach T, Brzozka Z (2017) Poly (l-lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture. Mater Sci Eng, C 75:305–316
doi: 10.1016/j.msec.2017.02.055
Tzahor E, Poss KD (2017) Cardiac regeneration strategies: staying young at heart. Science 356(6342):1035–1039
doi: 10.1126/science.aam5894
Wade RJ, Bassin EJ, Gramlich WM, Burdick JA (2015) Nanofibrous hydrogels with spatially patterned biochemical signals to control cell behavior. Adv Mater 27(8):1356–1362
doi: 10.1002/adma.201404993
Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K, Gilbert TW et al (2010) Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods 16(3):525–532. https://doi.org/10.1089/ten.TEC.2009.0392
doi: 10.1089/ten.TEC.2009.0392 pubmed: 19702513
Wang H, Hao J, Hong CC (2011) Cardiac induction of embryonic stem cells by a small molecule inhibitor of Wnt/β-catenin signaling. ACS Chem Biol 6(2):192–197. https://doi.org/10.1021/cb100323z
doi: 10.1021/cb100323z pubmed: 21077691
Wang F, Zhang J, Wang R, Gu Y, Li J, Wang C (2017) Triton X-100 combines with chymotrypsin: a more promising protocol to prepare decellularized porcine carotid arteries. Bio-Med Mater Eng 28(5):531–543. https://doi.org/10.3233/bme-171694
doi: 10.3233/bme-171694
Weymann A, Loganathan S, Takahashi H, Schies C, Claus B, Hirschberg K et al (2011) Development and evaluation of a perfusion decellularization porcine heart model–generation of 3-dimensional myocardial neoscaffolds. Circ J 75(4):852–860. https://doi.org/10.1253/circj.cj-10-0717
doi: 10.1253/circj.cj-10-0717 pubmed: 21301134
Wu KH, Wang SY, Xiao QR, Yang Y, Huang NP, Mo XM et al (2018) Small-molecule-based generation of functional cardiomyocytes from human umbilical cord-derived induced pluripotent stem cells. J Cell Biochem. https://doi.org/10.1002/jcb.27094
doi: 10.1002/jcb.27094 pubmed: 30687956 pmcid: 6195448
Xu R, Ding S, Zhao Y, Pu J, He B (2014) Autologous transplantation of bone marrow/blood-derived cells for chronic ischemic heart disease: a systematic review and meta-analysis. Can J Cardiol 30(11):1370–1377. https://doi.org/10.1016/j.cjca.2014.01.013
doi: 10.1016/j.cjca.2014.01.013 pubmed: 24726092
Yamamoto R, Miyagawa S, Toda K, Kainuma S, Yoshioka D, Yoshikawa Y et al (2019) Long-term outcome of ischemic cardiomyopathy after autologous myoblast cell-sheet implantation. Ann Thorac Surg 108(5):e303–e306. https://doi.org/10.1016/j.athoracsur.2019.03.028
doi: 10.1016/j.athoracsur.2019.03.028 pubmed: 30980822
Yau TM, Pagani FD, Mancini DM, Chang HL, Lala A, Woo YJ et al (2019) Intramyocardial injection of mesenchymal precursor cells and successful temporary weaning from left ventricular assist device support in patients with advanced heart failure: a randomized clinical trial. JAMA 321(12):1176–1186. https://doi.org/10.1001/jama.2019.2341
doi: 10.1001/jama.2019.2341 pubmed: 30912838 pmcid: 6439694
Yoon C, Song H, Yin T, Bausch-Fluck D, Frei AP, Kattman S et al (2018) FZD4 marks lateral plate mesoderm and signals with NORRIN to increase cardiomyocyte induction from pluripotent stem cell-derived cardiac progenitors. Stem Cell Reports. 10(1):87–100
doi: 10.1016/j.stemcr.2017.11.008
Yoshikawa Y, Miyagawa S, Toda K, Saito A, Sakata Y, Sawa Y (2018) Myocardial regenerative therapy using a scaffold-free skeletal-muscle-derived cell sheet in patients with dilated cardiomyopathy even under a left ventricular assist device: a safety and feasibility study. Surg Today 48(2):200–210. https://doi.org/10.1007/s00595-017-1571-1
doi: 10.1007/s00595-017-1571-1 pubmed: 28821963
Young BM, Shankar K, Tho CK, Pellegrino AR, Heise RL (2019) Laminin-driven Epac/Rap1 regulation of epithelial barriers on decellularized matrix. Acta Biomater 100:223–234. https://doi.org/10.1016/j.actbio.2019.10.009
doi: 10.1016/j.actbio.2019.10.009 pubmed: 31593773 pmcid: 6892605
Zhang C, Zhou Y, Lai X, Zhou G, Wang H, Feng X et al (2019) Human umbilical cord mesenchymal stem cells alleviate myocardial endothelial-mesenchymal transition in a rat dilated cardiomyopathy model. Transpl Proc 51(3):936–941. https://doi.org/10.1016/j.transproceed.2019.01.080
doi: 10.1016/j.transproceed.2019.01.080
Zurina IM, Presniakova VS, Butnaru DV, Svistunov AA, Timashev PS, Rochev YA (2020) Tissue engineering using a combined cell sheet technology and scaffolding approach. Acta Biomater 113:63–83. https://doi.org/10.1016/j.actbio.2020.06.016
doi: 10.1016/j.actbio.2020.06.016 pubmed: 32561471

Auteurs

Aram Akbarzadeh (A)

Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, 1419433151, Tehran, Iran.

Shabnam Sabetkish (S)

Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, 1419433151, Tehran, Iran.

Abdol-Mohammad Kajbafzadeh (AM)

Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, 1419433151, Tehran, Iran. kajbafzd@sina.tums.ac.ir.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH