Asymmetric Synthesis of Indoline from Achiral Phthalimide Involving Crystallization-Induced Deracemization.

Viedma ripening asymmetric synthesis deracemization indoline photochemistry

Journal

Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783

Informations de publication

Date de publication:
25 Nov 2021
Historique:
received: 14 09 2021
pubmed: 30 9 2021
medline: 15 12 2021
entrez: 29 9 2021
Statut: ppublish

Résumé

Asymmetric synthesis was performed by combining the photochemical reaction of an achiral substrate followed by crystallization-induced deracemization. The results indicated that a fused indoline produced by photochemical intramolecular δ-hydrogen abstraction and cyclization of N-(5-chloro-2-methylphenyl)phthalimide crystallized as a racemic conglomerate. Since this substrate has an aminal skeleton, racemization involving a ring-opening and ring-closing equilibrium process occurred under suitable conditions. Efficient racemization was observed in acetone containing a catalytic base, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Crystallization-induced dynamic deracemization by Viedma ripening from racemic indoline was performed with an excellent enantioselectivity of 99 % ee. Furthermore, one-pot asymmetric synthesis of the indoline was achieved by the photochemical reaction of achiral phthalimide followed by continuous attrition-enhanced deracemization converging to 99 % ee of enantiomeric crystals. This is the first example of asymmetric expression and amplification by photochemical hydrogen abstraction and crystallization-induced dynamic deracemization.

Identifiants

pubmed: 34585795
doi: 10.1002/chem.202103345
doi:

Substances chimiques

Indoles 0
Phthalimides 0
indoline 6DPT9AB2NK

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

16338-16341

Subventions

Organisme : Japan Society for the Promotion of Science
ID : JP19H02708

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

 
W. A. Bonner, Orig. Life Evol. Biospheres 1995, 25, 175-190;
J. L. Bada, Nature 1995, 374, 594-595;
L. Addadi, M. Lahav, Origin of Optical Activity in Nature (Ed. D. C. Walker), Elsevier, New York, 1979, 179-192;
S. F. Mason, Nature 1984, 311, 19-23;
W. E. Elias, J. Chem. Educ. 1972, 49, 448-454;
A. Salam, J. Mol. Evol. 1991, 33, 105-113;
B. L. Feringa, R. van Delden, Angew. Chem. Int. Ed. 1999, 38, 3418-3438;
Angew. Chem. 1999, 111, 3624-3645.
 
K. Soai, T. Shibata, H. Morioka, K. Choji, Nature 1995, 378, 767-768;
T. Kawasaki, M. Sato, S. Ishiguro, T. Saito, Y. Morishita, I. Sato, H. Nishino, Y. Inoue, K. Soai, J. Am. Chem. Soc. 2005, 127, 3274-3275;
D. G. Blackmond, Chem. Rev. 2020, 120, 4831-4847.
 
E. Havinga, Biochem. Biophys. Acta 1954, 13, 171-174;
J. Jacques, A. Collet, S. H. Wilen, Enantiomers, Racemates and Resolution, Krieger, FL, 1994;
W. L. Noorduin, A. A. C. Bode, M. van der Meijden, H. Meekes, A. F. van Etteger, W. J. P. van Enckevort, P. C. M. Christianen, B. Kaptein, R. M. Kellogg, T. Rasing, E. Vlieg, Nat. Chem. 2009, 1, 729-732;
M. Sakamoto, N. Uemura, R. Saito, H. Shimobayashi, Y. Yoshida, T. Mino, T. Omatsu, Angew. Chem. Int. Ed. 2021, 60, 12819-12823;
Angew. Chem. 2021, 133, 12929-12933;
V. Daśkov, J. Buter, A. K. Schoonen, M. Lutz, F. de Vries, B. L. Feringa, Angew. Chem. Int. Ed. 2021, 60, 11120-11126;
Angew. Chem. 2021, 133, 11220-11226.
 
G. Coquerel, in Advances in Organic Crystal Chemistry, Comprehensive Reviews 2015 (Eds: R. Tamura, M. Miyata), Springer, 2015, 393-420;
R. M. Kellogg, in Advances in Organic Crystal Chemistry, Comprehensive Reviews 2015 (Eds: R. Tamura, M. Miyata), Springer, 2015, 421-443;
M. Sakamoto, T. Mino, in Advances in Organic Crystal Chemistry, Comprehensive Reviews 2015 (Eds: R. Tamura, M. Miyata), Springer, 2015, 445-462.
C. Viedma, Phys. Rev. Lett. 2005, 94, 65504.
 
S. B. Tsogoeva, S. Wei, M. Freund, M. Mauksch, Angew. Chem. Int. Ed. 2009, 48, 590-594;
Angew. Chem. 2009, 121, 598-602;
A. M. Flock, C. M. M. Reucher, C. Bolm, Chem. Eur. J. 2010, 16, 3918-3921;
S. Hachiya, Y. Kasashima, F. Yagishita, T. Mino, H. Masu, M. Sakamoto, Chem. Commun. 2013, 49, 4776-4778;
R. R. E. Steendam, J. M. M. Verkade, T. J. B. van Benthem, H. Meekes, W. J. P. van Enckevort, J. Raap, F. P. J. T. Rutjes, E. Vlieg, Nat. Commun. 2014, 5, 5543-5545;
T. Kawasaki, N. Takamatsu, S. Aiba, Y. Tokunaga, Chem. Commun. 2015, 51, 14377-14380;
Y. Kaji, N. Uemura, Y. Kasashima, H. Ishikawa, Y. Yoshida, T. Mino, M. Sakamoto, Chem. Eur. J. 2016, 22, 16429-16432;
M. Sakamoto, K. Shiratsuki, N. Uemura, H. Ishikawa, Y. Yoshida, Y. Kasashima, T. Mino, Chem. Eur. J. 2017, 23, 1717-1721;
H. Ishikawa, N. Uemura, F. Yagishita, N. Baba, Y. Yoshida, T. Mino, Y. Kasashima, M. Sakamoto, Eur. J. Org. Chem. 2017, 6878-6881;
N. Uemura, K. Sano, A. Matsumoto, Y. Yoshida, T. Mino, M. Sakamoto, Chem. Asian J. 2019, 14, 4150-4153;
N. Uemura, S. Toyoda, H. Ishikawa, Y. Yoshida, T. Mino, Y. Kasashima, M. Sakamoto, J. Org. Chem. 2018, 83, 9300-9304;
N. Uemura, S. Toyoda, W. Shimizu, Y. Yoshida, T. Mino, M. Sakamoto, Symmetry 2020, 12, 910;
W. Shimizu, N. Uemura, Y. Yoshida, T. Mino, Y. Kasashima, M. Sakamoto, Cryst. Growth Des. 2020, 20, 5676-5681;
N. Uemura, M. Hosaka, A. Washio, Y. Yoshida, T. Mino, M. Sakamoto, Cryst. Growth Des. 2020, 20, 4898-4903;
A. Washio, M. Hosaka, N. Uemura, Y. Yoshida, T. Mino, Y. Kasashima, M. Sakamoto, Cryst. Growth Des. 2021, 21, 2423-2428.
 
H. Rau, in Chiral Photochemistry (Eds: Y. Inoue. V. Ramamurthy), Marcel Dekker, New York, 2004, 1-44;
A. Hölzl-Hobmeier, A. Bauer, A. V. Silva, S. M. Huber, C. Bannwarth, T. Bach, Nature 2018, 564, 240-243.
M. Sakamoto, in Advances in Organic Crystal Chemistry, Comprehensive Reviews 2020 (Eds: M. Sakamoto, N. Uekusa), Springer, 2020, 433-456.
J. Guillaumel, S. Léonce, A. Pierré, P. Renaud, B. Pfeiffer, P. B. Arimondo, C. Monneret, Eur. J. Med. Chem. 2006, 41, 379-386.
K. Dinnell, G. G. Chicchi, M. J. Dhar, J. M. Elliot, G. J. Hollingsworth, M. M. Kurtz, M. P. Ridgill, W. Rycroft, K.-L. Tsao, A. R. Williams, C. J. Swain, Bioorg. Med. Chem. Lett. 2001, 11, 1237-1240.
M.-F. Boussard, S. Truche, A. Rousseau-Rojas, S. Briss, S. Desamps, M. Droual, M. Wierzbicki, G. Ferry, V. Audinot, P. Delagrange, J. A. Boutin, Eur. J. Med. Chem. 2006, 41, 306-320.
S. Samorson, J. B. Bremner, A. Ball, K. Lewis, Bioorg. Med. Chem. 2006, 14, 857-865.
 
W. Zhang, P. Chen, G. Liu, Angew. Chem. Int. Ed. 2017, 56, 5336-5340;
Angew. Chem. 2017, 129, 5420-5424;
R.-R. Liu, Y.-G. Wang, Y.-L. Li, B.-B. Huang, R.-X. Liang, Y.-X. Jia, Angew. Chem. Int. Ed. 2017, 56, 7475-7478;
Angew. Chem. 2017, 129, 7583-7586;
X. Qin, M. W. Y. Lee, J. S. Zhou, Angew. Chem. Int. Ed. 2017, 56,12723-12726;
Angew. Chem. 2017, 129, 12897-12900;
R.-X. Liang, K. Wang, Q. Wu, W.-J. Sheng, Y.-X. Jia, Organometallics 2019, 38, 20, 3927-3930;
C. Shen, Ni. Zeidan, Q. Wu, C. B. J. Breuers, R.-R. Liu, Y.-X. Jia, M. Lautens, Chem. Sci. 2019, 10, 3118-3122.
 
Y. Kanaoka, K. Koyama, Tetrahedron Lett. 1972, 44, 4517-4520;
Y. Kanaoka, C. Nagasawa, H. Nakai, Y. Sato, H. Ogiwara, T. Mizoguchi, Heterocycles 1975, 3, 553-556.
Photochemical reaction of phthalimides was utilized to synthesize many valuable heterocycles.
A. G. Griesbeck, A. Henz, K. Peters, E.-M. Peters, H. G. von Schnering, Angew. Chem. Int. Ed. 1995, 34, 474-476;
Angew. Chem. 1995, 107, 498-500;
A. G. Griesbeck, N. Hoffmann, K.-D. Warzecha, Acc. Chem. Res. 2007, 40, 128-140;
U. C. Yoon, H. C. Kwon, T. G. Hyung, K. H. Choi, S. W. Oh, S. Yang, Z. Zhao, P. S. Mariano, J. Am. Chem. Soc. 2004, 126, 1110-1124;
L. Mandíc, K. Mlinaríc-Majerski, A. G. Griesbeck, N. Basaríc, Eur. J. Org. Chem. 2016, 4404-4414.
Deposition Number(s)2099506 (for 2 a), 2099507 (for 2 b), 2099508 (for 2 c), 2099509 (for 2 d), 2099510 (for 2 e), 2099511 (for 2 f), 2099512 (for 2 g) contain(s) the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.

Auteurs

Takumi Nakamura (T)

Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.

Kazuma Ban (K)

Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.

Yasushi Yoshida (Y)

Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.

Takashi Mino (T)

Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.

Yoshio Kasashima (Y)

Education Center, Faculty of Creative Engineering, Chiba Institute of Technology, Shibazono, Narashino, Chiba, 275-0023, Japan.

Masami Sakamoto (M)

Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.

Articles similaires

Risk Assessment Plant Leaves Isomerism Humans Stereoisomerism
Animals Male Mice, Inbred C57BL Mice Bleomycin

Yu Hu, Liu-Lin Chen, Zhen Ye et al.
1.00
Colitis, Ulcerative Humans Animals Drugs, Chinese Herbal Anti-Inflammatory Agents
1.00
Humans Poly(ADP-ribose) Polymerase Inhibitors Male Prostatic Neoplasms, Castration-Resistant Prostatic Neoplasms

Classifications MeSH