Asymmetric Synthesis of Indoline from Achiral Phthalimide Involving Crystallization-Induced Deracemization.
Viedma ripening
asymmetric synthesis
deracemization
indoline
photochemistry
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
25 Nov 2021
25 Nov 2021
Historique:
received:
14
09
2021
pubmed:
30
9
2021
medline:
15
12
2021
entrez:
29
9
2021
Statut:
ppublish
Résumé
Asymmetric synthesis was performed by combining the photochemical reaction of an achiral substrate followed by crystallization-induced deracemization. The results indicated that a fused indoline produced by photochemical intramolecular δ-hydrogen abstraction and cyclization of N-(5-chloro-2-methylphenyl)phthalimide crystallized as a racemic conglomerate. Since this substrate has an aminal skeleton, racemization involving a ring-opening and ring-closing equilibrium process occurred under suitable conditions. Efficient racemization was observed in acetone containing a catalytic base, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Crystallization-induced dynamic deracemization by Viedma ripening from racemic indoline was performed with an excellent enantioselectivity of 99 % ee. Furthermore, one-pot asymmetric synthesis of the indoline was achieved by the photochemical reaction of achiral phthalimide followed by continuous attrition-enhanced deracemization converging to 99 % ee of enantiomeric crystals. This is the first example of asymmetric expression and amplification by photochemical hydrogen abstraction and crystallization-induced dynamic deracemization.
Identifiants
pubmed: 34585795
doi: 10.1002/chem.202103345
doi:
Substances chimiques
Indoles
0
Phthalimides
0
indoline
6DPT9AB2NK
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
16338-16341Subventions
Organisme : Japan Society for the Promotion of Science
ID : JP19H02708
Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
W. A. Bonner, Orig. Life Evol. Biospheres 1995, 25, 175-190;
J. L. Bada, Nature 1995, 374, 594-595;
L. Addadi, M. Lahav, Origin of Optical Activity in Nature (Ed. D. C. Walker), Elsevier, New York, 1979, 179-192;
S. F. Mason, Nature 1984, 311, 19-23;
W. E. Elias, J. Chem. Educ. 1972, 49, 448-454;
A. Salam, J. Mol. Evol. 1991, 33, 105-113;
B. L. Feringa, R. van Delden, Angew. Chem. Int. Ed. 1999, 38, 3418-3438;
Angew. Chem. 1999, 111, 3624-3645.
K. Soai, T. Shibata, H. Morioka, K. Choji, Nature 1995, 378, 767-768;
T. Kawasaki, M. Sato, S. Ishiguro, T. Saito, Y. Morishita, I. Sato, H. Nishino, Y. Inoue, K. Soai, J. Am. Chem. Soc. 2005, 127, 3274-3275;
D. G. Blackmond, Chem. Rev. 2020, 120, 4831-4847.
E. Havinga, Biochem. Biophys. Acta 1954, 13, 171-174;
J. Jacques, A. Collet, S. H. Wilen, Enantiomers, Racemates and Resolution, Krieger, FL, 1994;
W. L. Noorduin, A. A. C. Bode, M. van der Meijden, H. Meekes, A. F. van Etteger, W. J. P. van Enckevort, P. C. M. Christianen, B. Kaptein, R. M. Kellogg, T. Rasing, E. Vlieg, Nat. Chem. 2009, 1, 729-732;
M. Sakamoto, N. Uemura, R. Saito, H. Shimobayashi, Y. Yoshida, T. Mino, T. Omatsu, Angew. Chem. Int. Ed. 2021, 60, 12819-12823;
Angew. Chem. 2021, 133, 12929-12933;
V. Daśkov, J. Buter, A. K. Schoonen, M. Lutz, F. de Vries, B. L. Feringa, Angew. Chem. Int. Ed. 2021, 60, 11120-11126;
Angew. Chem. 2021, 133, 11220-11226.
G. Coquerel, in Advances in Organic Crystal Chemistry, Comprehensive Reviews 2015 (Eds: R. Tamura, M. Miyata), Springer, 2015, 393-420;
R. M. Kellogg, in Advances in Organic Crystal Chemistry, Comprehensive Reviews 2015 (Eds: R. Tamura, M. Miyata), Springer, 2015, 421-443;
M. Sakamoto, T. Mino, in Advances in Organic Crystal Chemistry, Comprehensive Reviews 2015 (Eds: R. Tamura, M. Miyata), Springer, 2015, 445-462.
C. Viedma, Phys. Rev. Lett. 2005, 94, 65504.
S. B. Tsogoeva, S. Wei, M. Freund, M. Mauksch, Angew. Chem. Int. Ed. 2009, 48, 590-594;
Angew. Chem. 2009, 121, 598-602;
A. M. Flock, C. M. M. Reucher, C. Bolm, Chem. Eur. J. 2010, 16, 3918-3921;
S. Hachiya, Y. Kasashima, F. Yagishita, T. Mino, H. Masu, M. Sakamoto, Chem. Commun. 2013, 49, 4776-4778;
R. R. E. Steendam, J. M. M. Verkade, T. J. B. van Benthem, H. Meekes, W. J. P. van Enckevort, J. Raap, F. P. J. T. Rutjes, E. Vlieg, Nat. Commun. 2014, 5, 5543-5545;
T. Kawasaki, N. Takamatsu, S. Aiba, Y. Tokunaga, Chem. Commun. 2015, 51, 14377-14380;
Y. Kaji, N. Uemura, Y. Kasashima, H. Ishikawa, Y. Yoshida, T. Mino, M. Sakamoto, Chem. Eur. J. 2016, 22, 16429-16432;
M. Sakamoto, K. Shiratsuki, N. Uemura, H. Ishikawa, Y. Yoshida, Y. Kasashima, T. Mino, Chem. Eur. J. 2017, 23, 1717-1721;
H. Ishikawa, N. Uemura, F. Yagishita, N. Baba, Y. Yoshida, T. Mino, Y. Kasashima, M. Sakamoto, Eur. J. Org. Chem. 2017, 6878-6881;
N. Uemura, K. Sano, A. Matsumoto, Y. Yoshida, T. Mino, M. Sakamoto, Chem. Asian J. 2019, 14, 4150-4153;
N. Uemura, S. Toyoda, H. Ishikawa, Y. Yoshida, T. Mino, Y. Kasashima, M. Sakamoto, J. Org. Chem. 2018, 83, 9300-9304;
N. Uemura, S. Toyoda, W. Shimizu, Y. Yoshida, T. Mino, M. Sakamoto, Symmetry 2020, 12, 910;
W. Shimizu, N. Uemura, Y. Yoshida, T. Mino, Y. Kasashima, M. Sakamoto, Cryst. Growth Des. 2020, 20, 5676-5681;
N. Uemura, M. Hosaka, A. Washio, Y. Yoshida, T. Mino, M. Sakamoto, Cryst. Growth Des. 2020, 20, 4898-4903;
A. Washio, M. Hosaka, N. Uemura, Y. Yoshida, T. Mino, Y. Kasashima, M. Sakamoto, Cryst. Growth Des. 2021, 21, 2423-2428.
H. Rau, in Chiral Photochemistry (Eds: Y. Inoue. V. Ramamurthy), Marcel Dekker, New York, 2004, 1-44;
A. Hölzl-Hobmeier, A. Bauer, A. V. Silva, S. M. Huber, C. Bannwarth, T. Bach, Nature 2018, 564, 240-243.
M. Sakamoto, in Advances in Organic Crystal Chemistry, Comprehensive Reviews 2020 (Eds: M. Sakamoto, N. Uekusa), Springer, 2020, 433-456.
J. Guillaumel, S. Léonce, A. Pierré, P. Renaud, B. Pfeiffer, P. B. Arimondo, C. Monneret, Eur. J. Med. Chem. 2006, 41, 379-386.
K. Dinnell, G. G. Chicchi, M. J. Dhar, J. M. Elliot, G. J. Hollingsworth, M. M. Kurtz, M. P. Ridgill, W. Rycroft, K.-L. Tsao, A. R. Williams, C. J. Swain, Bioorg. Med. Chem. Lett. 2001, 11, 1237-1240.
M.-F. Boussard, S. Truche, A. Rousseau-Rojas, S. Briss, S. Desamps, M. Droual, M. Wierzbicki, G. Ferry, V. Audinot, P. Delagrange, J. A. Boutin, Eur. J. Med. Chem. 2006, 41, 306-320.
S. Samorson, J. B. Bremner, A. Ball, K. Lewis, Bioorg. Med. Chem. 2006, 14, 857-865.
W. Zhang, P. Chen, G. Liu, Angew. Chem. Int. Ed. 2017, 56, 5336-5340;
Angew. Chem. 2017, 129, 5420-5424;
R.-R. Liu, Y.-G. Wang, Y.-L. Li, B.-B. Huang, R.-X. Liang, Y.-X. Jia, Angew. Chem. Int. Ed. 2017, 56, 7475-7478;
Angew. Chem. 2017, 129, 7583-7586;
X. Qin, M. W. Y. Lee, J. S. Zhou, Angew. Chem. Int. Ed. 2017, 56,12723-12726;
Angew. Chem. 2017, 129, 12897-12900;
R.-X. Liang, K. Wang, Q. Wu, W.-J. Sheng, Y.-X. Jia, Organometallics 2019, 38, 20, 3927-3930;
C. Shen, Ni. Zeidan, Q. Wu, C. B. J. Breuers, R.-R. Liu, Y.-X. Jia, M. Lautens, Chem. Sci. 2019, 10, 3118-3122.
Y. Kanaoka, K. Koyama, Tetrahedron Lett. 1972, 44, 4517-4520;
Y. Kanaoka, C. Nagasawa, H. Nakai, Y. Sato, H. Ogiwara, T. Mizoguchi, Heterocycles 1975, 3, 553-556.
Photochemical reaction of phthalimides was utilized to synthesize many valuable heterocycles.
A. G. Griesbeck, A. Henz, K. Peters, E.-M. Peters, H. G. von Schnering, Angew. Chem. Int. Ed. 1995, 34, 474-476;
Angew. Chem. 1995, 107, 498-500;
A. G. Griesbeck, N. Hoffmann, K.-D. Warzecha, Acc. Chem. Res. 2007, 40, 128-140;
U. C. Yoon, H. C. Kwon, T. G. Hyung, K. H. Choi, S. W. Oh, S. Yang, Z. Zhao, P. S. Mariano, J. Am. Chem. Soc. 2004, 126, 1110-1124;
L. Mandíc, K. Mlinaríc-Majerski, A. G. Griesbeck, N. Basaríc, Eur. J. Org. Chem. 2016, 4404-4414.
Deposition Number(s)2099506 (for 2 a), 2099507 (for 2 b), 2099508 (for 2 c), 2099509 (for 2 d), 2099510 (for 2 e), 2099511 (for 2 f), 2099512 (for 2 g) contain(s) the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.