Emergency of Tsallis statistics in fractal networks.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2021
2021
Historique:
received:
02
06
2021
accepted:
12
09
2021
entrez:
29
9
2021
pubmed:
30
9
2021
medline:
23
11
2021
Statut:
epublish
Résumé
Scale-free networks constitute a fast-developing field that has already provided us with important tools to understand natural and social phenomena. From biological systems to environmental modifications, from quantum fields to high energy collisions, or from the number of contacts one person has, on average, to the flux of vehicles in the streets of urban centres, all these complex, non-linear problems are better understood under the light of the scale-free network's properties. A few mechanisms have been found to explain the emergence of scale invariance in complex networks, and here we discuss a mechanism based on the way information is locally spread among agents in a scale-free network. We show that the correct description of the information dynamics is given in terms of the q-exponential function, with the power-law behaviour arising in the asymptotic limit. This result shows that the best statistical approach to the information dynamics is given by Tsallis Statistics. We discuss the main properties of the information spreading process in the network and analyse the role and behaviour of some of the parameters as the number of agents increases. The different mechanisms for optimization of the information spread are discussed.
Identifiants
pubmed: 34587173
doi: 10.1371/journal.pone.0257855
pii: PONE-D-21-18197
pmc: PMC8480727
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0257855Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Nature. 1998 Jun 4;393(6684):440-2
pubmed: 9623998
Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7301-6
pubmed: 17438298
Nature. 2005 Jan 27;433(7024):392-5
pubmed: 15674285
Sci Rep. 2021 Jan 13;11(1):1130
pubmed: 33441951
Proc Biol Sci. 2007 Sep 7;274(1622):2195-202
pubmed: 17609186
Science. 1999 Oct 15;286(5439):509-12
pubmed: 10521342
Sci Rep. 2021 Feb 25;11(1):4619
pubmed: 33633290
Phys Rev Lett. 2000 Dec 11;85(24):5234-7
pubmed: 11102229
Phys Rev Lett. 2000 Nov 20;85(21):4626-8
pubmed: 11082612
Science. 2013 Jun 21;340(6139):1418-9
pubmed: 23788792
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062806
pubmed: 23848728
Chaos Solitons Fractals. 2020 Nov;140:110119
pubmed: 33519108
Proc Math Phys Eng Sci. 2020 Sep;476(2241):20190742
pubmed: 33071564
Sci Rep. 2021 Mar 22;11(1):6542
pubmed: 33753807
Nat Commun. 2020 Nov 27;11(1):6043
pubmed: 33247151
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19540-5
pubmed: 22114186
Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6
pubmed: 12060727
J R Soc Interface. 2016 Jan;13(114):20150937
pubmed: 26790997
Science. 2013 Jun 21;340(6139):1438-41
pubmed: 23788793
Science. 1999 Jun 4;284(5420):1677-9
pubmed: 10356399
Phys Rev Lett. 2001 Apr 2;86(14):3200-3
pubmed: 11290142
Nat Commun. 2019 Mar 4;10(1):1016
pubmed: 30833568
J Comput Biol. 2006 Apr;13(3):810-8
pubmed: 16706727
J R Soc Interface. 2005 Sep 22;2(4):295-307
pubmed: 16849187
Entropy (Basel). 2018 Aug 24;20(9):
pubmed: 33265722