Unraveling the physiological roles of retinoic acid receptor-related orphan receptor α.
Journal
Experimental & molecular medicine
ISSN: 2092-6413
Titre abrégé: Exp Mol Med
Pays: United States
ID NLM: 9607880
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
14
06
2021
accepted:
13
07
2021
revised:
12
07
2021
pubmed:
1
10
2021
medline:
30
3
2022
entrez:
30
9
2021
Statut:
ppublish
Résumé
Retinoic acid receptor-related orphan receptor-α (RORα) is a member of the orphan nuclear receptor family and functions as a transcriptional activator in response to circadian changes. Circadian rhythms are complex cellular mechanisms regulating diverse metabolic, inflammatory, and tumorigenic gene expression pathways that govern cyclic cellular physiology. Disruption of circadian regulators, including RORα, plays a critical role in tumorigenesis and facilitates the development of inflammatory hallmarks. Although RORα contributes to overall fitness among anticancer, anti-inflammatory, lipid homeostasis, and circadian clock mechanisms, the molecular mechanisms underlying the mode of transcriptional regulation by RORα remain unclear. Nonetheless, RORα has important implications for pharmacological prevention of cancer, inflammation, and metabolic diseases, and understanding context-dependent RORα regulation will provide an innovative approach for unraveling the functional link between cancer metabolism and rhythm changes.
Identifiants
pubmed: 34588606
doi: 10.1038/s12276-021-00679-8
pii: 10.1038/s12276-021-00679-8
pmc: PMC8492739
doi:
Substances chimiques
Nuclear Receptor Subfamily 1, Group F, Member 1
0
RORA protein, human
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1278-1286Informations de copyright
© 2021. The Author(s).
Références
Park, S. C., Park, I. G., Kim, H. & Lee, J. M. N-terminal domain mediated regulation of RORalpha1 inhibits invasive growth in prostate cancer. Int. J. Mol. Sci. 20, 1684 (2019).
pmcid: 6479703
doi: 10.3390/ijms20071684
Song, H. et al. Isoform-specific lysine methylation of RORalpha2 by SETD7 is required for association of the TIP60 coactivator complex in prostate cancer progression. Int. J. Mol. Sci. 21, 1622 (2020).
pmcid: 7084544
doi: 10.3390/ijms21051622
Giguère, V., McBroom, L. D. & Flock, G. Determinants of target gene specificity for ROR alpha 1: monomeric DNA binding by an orphan nuclear receptor. Mol. Cell. Biol. 15, 2517–2526 (1995).
pubmed: 7739535
pmcid: 230482
doi: 10.1128/MCB.15.5.2517
Harding, H. P., Atkins, G. B., Jaffe, A. B., Seo, W. J. & Lazar, M. A. Transcriptional activation and repression by RORalpha, an orphan nuclear receptor required for cerebellar development. Mol. Endocrinol. 11, 1737–1746 (1997).
pubmed: 9328355
Atkins, G. B. et al. Coactivators for the orphan nuclear receptor RORalpha. Mol. Endocrinol. 13, 1550–1557 (1999).
pubmed: 10478845
Kumar, N. et al. Identification of SR3335 (ML-176): a synthetic RORalpha selective inverse agonist. ACS Chem. Biol. 6, 218–222 (2011).
pubmed: 21090593
doi: 10.1021/cb1002762
Wang, Y., Solt, L. A., Kojetin, D. J. & Burris, T. P. Regulation of p53 stability and apoptosis by a ROR agonist. PLoS ONE 7, e34921 (2012).
pubmed: 22509368
pmcid: 3324542
doi: 10.1371/journal.pone.0034921
Liu, Y. et al. Retinoic acid receptor-related orphan receptor alpha stimulates adipose tissue inflammation by modulating endoplasmic reticulum stress. J. Biol. Chem. 292, 13959–13969 (2017).
pubmed: 28698385
pmcid: 5572914
doi: 10.1074/jbc.M117.782391
Cai, J., Jiao, X., Fang, Y., Yu, X. & Ding, X. The orphan nuclear receptor RORalpha is a potential endogenous protector in renal ischemia/reperfusion injury. FASEB J. 33, 5704–5715 (2019).
pubmed: 30673513
doi: 10.1096/fj.201802248R
Lee, J. E. et al. A critical regulation of Th2 cell responses by RORalpha in allergic asthma. Sci. China Life Sci. 64, 1326–1335 (2021).
pubmed: 33165810
doi: 10.1007/s11427-020-1825-3
Hamilton, B. A. et al. Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature 379, 736–739 (1996).
pubmed: 8602221
doi: 10.1038/379736a0
Gold, D. A., Gent, P. M. & Hamilton, B. A. ROR alpha in genetic control of cerebellum development: 50 staggering years. Brain Res. 1140, 19–25 (2007).
pubmed: 16427031
doi: 10.1016/j.brainres.2005.11.080
Steinmayr, M. et al. Staggerer phenotype in retinoid-related orphan receptor alpha-deficient mice. Proc. Natl Acad. Sci. USA 95, 3960–3965 (1998).
pubmed: 9520475
pmcid: 19945
doi: 10.1073/pnas.95.7.3960
Dai, J., Brooks, Y., Lefort, K., Getsios, S. & Dotto, G. P. The retinoid-related orphan receptor RORalpha promotes keratinocyte differentiation via FOXN1. PLoS ONE 8, e70392 (2013).
pubmed: 23922987
pmcid: 3726659
doi: 10.1371/journal.pone.0070392
Lee, J. M. et al. RORalpha attenuates Wnt/beta-catenin signaling by PKCalpha-dependent phosphorylation in colon cancer. Mol. Cell 37, 183–195 (2010).
pubmed: 20122401
doi: 10.1016/j.molcel.2009.12.022
Moretti, R. M., Montagnani Marelli, M., Sala, A., Motta, M. & Limonta, P. Activation of the orphan nuclear receptor RORalpha counteracts the proliferative effect of fatty acids on prostate cancer cells: crucial role of 5-lipoxygenase. Int. J. Cancer 112, 87–93 (2004).
pubmed: 15305379
doi: 10.1002/ijc.20387
Byun, J. K. et al. Retinoic acid-related orphan receptor alpha reprograms glucose metabolism in glutamine-deficient hepatoma cells. Hepatology 61, 953–964 (2015).
pubmed: 25346526
doi: 10.1002/hep.27577
Xiong, G., Wang, C., Evers, B. M., Zhou, B. P. & Xu, R. RORalpha suppresses breast tumor invasion by inducing SEMA3F expression. Cancer Res. 72, 1728–1739 (2012).
pubmed: 22350413
pmcid: 3319846
doi: 10.1158/0008-5472.CAN-11-2762
Slominski, A. T. et al. On the role of classical and novel forms of vitamin D in melanoma progression and management. J. Steroid Biochem. Mol. Biol. 177, 159–170 (2018).
pubmed: 28676457
doi: 10.1016/j.jsbmb.2017.06.013
Kopmels, B. et al. Evidence for a hyperexcitability state of staggerer mutant mice macrophages. J. Neurochem. 58, 192–199 (1992).
pubmed: 1727430
doi: 10.1111/j.1471-4159.1992.tb09295.x
Han, Y. H. et al. RORalpha induces KLF4-mediated M2 polarization in the liver macrophages that protect against nonalcoholic steatohepatitis. Cell Rep. 20, 124–135 (2017).
pubmed: 28683306
doi: 10.1016/j.celrep.2017.06.017
Oh, S. K. et al. RORalpha is crucial for attenuated inflammatory response to maintain intestinal homeostasis. Proc. Natl Acad. Sci. USA 116, 21140–21149 (2019).
pubmed: 31570593
pmcid: 6800319
doi: 10.1073/pnas.1907595116
Kim, K. et al. RORalpha controls hepatic lipid homeostasis via negative regulation of PPARgamma transcriptional network. Nat. Commun. 8, 162 (2017).
pubmed: 28757615
pmcid: 5534431
doi: 10.1038/s41467-017-00215-1
Power, T. E. & Robinson, J. Cancers related to genetic mutations: important psychosocial issues for Canadian family physicians. Can. Fam. Physician 52, 1425–1431 (2006).
pubmed: 17279200
pmcid: 1783705
Tollis, M., Schneider-Utaka, A. K. & Maley, C. C. The evolution of human cancer gene duplications across mammals. Mol. Biol. Evol. 37, 2875–2886 (2020).
pubmed: 32421773
pmcid: 7530603
doi: 10.1093/molbev/msaa125
Thompson, S. L. & Compton, D. A. Chromosomes and cancer cells. Chromosome Res. 19, 433–444 (2011).
pubmed: 21190130
pmcid: 3770937
doi: 10.1007/s10577-010-9179-y
Nair, S. S. & Kumar, R. Chromatin remodeling in cancer: a gateway to regulate gene transcription. Mol. Oncol. 6, 611–619 (2012).
pubmed: 23127546
pmcid: 3538127
doi: 10.1016/j.molonc.2012.09.005
Anderson, M. W., Reynolds, S. H., You, M. & Maronpot, R. M. Role of proto-oncogene activation in carcinogenesis. Environ. Health Perspect. 98, 13–24 (1992).
pubmed: 1486840
pmcid: 1519627
doi: 10.1289/ehp.929813
Rak, J., Yu, J. L., Klement, G. & Kerbel, R. S. Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J. Investig. Dermatol. Symp. Proc. 5, 24–33 (2000).
pubmed: 11147671
doi: 10.1046/j.1087-0024.2000.00012.x
Pedraza-Farina, L. G. Mechanisms of oncogenic cooperation in cancer initiation and metastasis. Yale J. Biol. Med. 79, 95–103 (2006).
pubmed: 17940619
Gupta, S., Takebe, N. & Lorusso, P. Targeting the Hedgehog pathway in cancer. Ther. Adv. Med. Oncol. 2, 237–250 (2010).
pubmed: 21789137
pmcid: 3126020
doi: 10.1177/1758834010366430
Sever, R. & Brugge, J. S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med. 5, a006098 (2015).
pubmed: 25833940
pmcid: 4382731
doi: 10.1101/cshperspect.a006098
Berrabah, W., Aumercier, P., Lefebvre, P. & Staels, B. Control of nuclear receptor activities in metabolism by post-translational modifications. FEBS Lett. 585, 1640–1650 (2011).
pubmed: 21486568
doi: 10.1016/j.febslet.2011.03.066
Flotho, A. & Melchior, F. Sumoylation: a regulatory protein modification in health and disease. Annu. Rev. Biochem. 82, 357–385 (2013).
pubmed: 23746258
doi: 10.1146/annurev-biochem-061909-093311
Hwang, E. J. et al. SUMOylation of RORalpha potentiates transcriptional activation function. Biochem. Biophys. Res. Commun. 378, 513–517 (2009).
pubmed: 19041634
doi: 10.1016/j.bbrc.2008.11.072
Giguère, V. et al. Isoform-specific amino-terminal domains dictate DNA-binding properties of ROR alpha, a novel family of orphan hormone nuclear receptors. Genes Dev. 8, 538–553 (1994).
pubmed: 7926749
doi: 10.1101/gad.8.5.538
Katoh, M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int. J. Oncol. 51, 1357–1369 (2017).
pubmed: 29048660
pmcid: 5642388
doi: 10.3892/ijo.2017.4129
Wang, L., Wang, H., Duan, X., Dai, P. & Li, J. Comprehensive analysis of the canonical and non-canonical Wnt signaling pathways in gastric cancer. Dig. Dis. Sci. 64, 2830–2842 (2019).
pubmed: 30997579
doi: 10.1007/s10620-019-05606-6
Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).
pubmed: 15829956
doi: 10.1038/nature03482
Yin, Y., Stephen, C. W., Luciani, M. G. & Fahraeus, R. p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat. Cell Biol. 4, 462–467 (2002).
pubmed: 12032546
doi: 10.1038/ncb801
Brooks, C. L. & Gu, W. p53 ubiquitination: Mdm2 and beyond. Mol. Cell 21, 307–315 (2006).
pubmed: 16455486
pmcid: 3737769
doi: 10.1016/j.molcel.2006.01.020
Kim, E. J. et al. Retinoic acid receptor-related orphan receptor alpha-induced activation of adenosine monophosphate-activated protein kinase results in attenuation of hepatic steatosis. Hepatology 55, 1379–1388 (2012).
pubmed: 22183856
doi: 10.1002/hep.25529
Buckley, C. D. et al. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol. 22, 199–204 (2001).
pubmed: 11274925
doi: 10.1016/S1471-4906(01)01863-4
Chen, F., Castranova, V., Shi, X. & Demers, L. M. New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin. Chem. 45, 7–17 (1999).
pubmed: 9895331
doi: 10.1093/clinchem/45.1.7
Baldwin, A. S. Jr The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–683 (1996).
pubmed: 8717528
doi: 10.1146/annurev.immunol.14.1.649
Marx, J. Cancer research. Inflammation and cancer: the link grows stronger. Science 306, 966–968 (2004).
pubmed: 15528423
doi: 10.1126/science.306.5698.966
Han, S. et al. ROR alpha protects against LPS-induced inflammation by down-regulating SIRT1/NF-kappa B pathway. Arch. Biochem. Biophys. 668, 1–8 (2019).
pubmed: 31071300
doi: 10.1016/j.abb.2019.05.003
Barry, A. E. et al. Hepatic stellate cells and hepatocarcinogenesis. Front. Cell. Dev. Biol. 8, 709 (2020).
pubmed: 32850829
pmcid: 7419619
doi: 10.3389/fcell.2020.00709
Lee, I. K. et al. RORalpha regulates cholesterol metabolism of CD8(+) T cells for anticancer immunity. Cancers (Basel) 12, 1733 (2020).
doi: 10.3390/cancers12071733
Chen, X. R. et al. Mature Purkinje cells require the retinoic acid-related orphan receptor-alpha (RORalpha) to maintain climbing fiber mono-innervation and other adult characteristics. J. Neurosci. 33, 9546–9562 (2013).
pubmed: 23719821
pmcid: 6618556
doi: 10.1523/JNEUROSCI.2977-12.2013
Janmaat, S. et al. Age-related Purkinje cell death is steroid dependent: RORalpha haplo-insufficiency impairs plasma and cerebellar steroids and Purkinje cell survival. Age (Dordr.). 33, 565–578 (2011).
pubmed: 21222044
pmcid: 3220403
doi: 10.1007/s11357-010-9203-3
Takeo, Y. H., Kakegawa, W., Miura, E. & Yuzaki, M. RORalpha regulates multiple aspects of dendrite development in cerebellar Purkinje cells in vivo. J. Neurosci. 35, 12518–12534 (2015).
pubmed: 26354918
pmcid: 6605396
doi: 10.1523/JNEUROSCI.0075-15.2015
Gold, D. A. et al. RORalpha coordinates reciprocal signaling in cerebellar development through sonic hedgehog and calcium-dependent pathways. Neuron 40, 1119–1131 (2003).
pubmed: 14687547
pmcid: 2717708
doi: 10.1016/S0896-6273(03)00769-4
Akashi, M. & Takumi, T. The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1. Nat. Struct. Mol. Biol. 12, 441–448 (2005).
pubmed: 15821743
doi: 10.1038/nsmb925
Guillaumond, F., Dardente, H., Giguère, V. & Cermakian, N. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J. Biol. Rhythms 20, 391–403 (2005).
pubmed: 16267379
doi: 10.1177/0748730405277232
Forman, B. M. et al. Cross-talk among ROR alpha 1 and the Rev-erb family of orphan nuclear receptors. Mol. Endocrinol. 8, 1253–1261 (1994).
pubmed: 7838158
Liu, C., Li, S., Liu, T., Borjigin, J. & Lin, J. D. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447, 477–481 (2007).
pubmed: 17476214
doi: 10.1038/nature05767
Crumbley, C., Wang, Y., Kojetin, D. J. & Burris, T. P. Characterization of the core mammalian clock component, NPAS2, as a REV-ERBalpha/RORalpha target gene. J. Biol. Chem. 285, 35386–35392 (2010).
pubmed: 20817722
pmcid: 2975162
doi: 10.1074/jbc.M110.129288
Poliandri, A. H. et al. Modulation of clock gene expression by the transcriptional coregulator receptor interacting protein 140 (RIP140). J. Biol. Rhythms 26, 187–199 (2011).
pubmed: 21628546
pmcid: 3207295
doi: 10.1177/0748730411401579
Mocellin, S., Tropea, S., Benna, C. & Rossi, C. R. Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies. BMC Med. 16, 20 (2018).
pubmed: 29455641
pmcid: 5817863
doi: 10.1186/s12916-018-1010-1
Gu, D. et al. Circadian clock pathway genes associated with colorectal cancer risk and prognosis. Arch. Toxicol. 92, 2681–2689 (2018).
pubmed: 29968159
doi: 10.1007/s00204-018-2251-7
Qiu, M. J. et al. Research on circadian clock genes in common abdominal malignant tumors. Chronobiol. Int. 36, 906–918 (2019).
pubmed: 31014126
doi: 10.1080/07420528.2018.1477792
Lau, P. et al. The orphan nuclear receptor, RORalpha, regulates gene expression that controls lipid metabolism: staggerer (SG/SG) mice are resistant to diet-induced obesity. J. Biol. Chem. 283, 18411–18421 (2008).
pubmed: 18441015
doi: 10.1074/jbc.M710526200
Kadiri, S. et al. The nuclear retinoid-related orphan receptor-alpha regulates adipose tissue glyceroneogenesis in addition to hepatic gluconeogenesis. Am. J. Physiol. Endocrinol. Metab. 309, E105–E114 (2015).
pubmed: 26015436
doi: 10.1152/ajpendo.00518.2014
Lau, P. et al. Roralpha deficiency and decreased adiposity are associated with induction of thermogenic gene expression in subcutaneous white adipose and brown adipose tissue. Am. J. Physiol. Endocrinol. Metab. 308, E159–E171 (2015).
pubmed: 25424999
doi: 10.1152/ajpendo.00056.2014
Zhang, Y. et al. The hepatic circadian clock fine-tunes the lipogenic response to feeding through RORalpha/gamma. Genes Dev. 31, 1202–1211 (2017).
pubmed: 28747429
pmcid: 5558923
doi: 10.1101/gad.302323.117
Schultz, J. R. et al. Role of LXRs in control of lipogenesis. Genes Dev. 14, 2831–2838 (2000).
pubmed: 11090131
pmcid: 317060
doi: 10.1101/gad.850400
Chai, C. et al. Agonist of RORA attenuates nonalcoholic fatty liver progression in mice via up-regulation of microRNA 122. Gastroenterology 159, 999–1014.e9 (2020).
pubmed: 32450149
doi: 10.1053/j.gastro.2020.05.056
Panteleeva, A. A. et al. Expression of genes encoding nuclear factors PPARgamma, LXRbeta, and RORalpha in epicardial and subcutaneous adipose tissues in patients with coronary heart disease. Bull. Exp. Biol. Med. 170, 654–657 (2021).
pubmed: 33788111
doi: 10.1007/s10517-021-05126-2
Panteleeva, A. A. et al. [The expression of genes encoding ABCA1 and ABCG1 transporters and PPARgamma, LXRbeta, and RORalpha transcriptional factors in subcutaneous and visceral adipose tissue in women with metabolic syndrome]. Mol. Biol. (Mosk.) 55, 64–74 (2021).
doi: 10.1134/S0026893321010131
Verlande, A. & Masri, S. Circadian clocks and cancer: timekeeping governs cellular metabolism. Trends Endocrinol. Metab. 30, 445–458 (2019).
pubmed: 31155396
pmcid: 6679985
doi: 10.1016/j.tem.2019.05.001
Masri, S. & Sassone-Corsi, P. The emerging link between cancer, metabolism, and circadian rhythms. Nat. Med. 24, 1795–1803 (2018).
pubmed: 30523327
pmcid: 6535395
doi: 10.1038/s41591-018-0271-8
Zhang, Y., Luo, X. Y., Wu, D. H. & Xu, Y. ROR nuclear receptors: structures, related diseases, and drug discovery. Acta Pharmacol. Sin. 36, 71–87 (2015).
pubmed: 25500868
doi: 10.1038/aps.2014.120
Han, S. J., Lonard, D. M. & O’Malley, B. W. Multi-modulation of nuclear receptor coactivators through posttranslational modifications. Trends Endocrinol. Metab. 20, 8–15 (2009).
pubmed: 19019695
doi: 10.1016/j.tem.2008.10.001
Filtz, T. M., Vogel, W. K. & Leid, M. Regulation of transcription factor activity by interconnected post-translational modifications. Trends Pharmacol. Sci. 35, 76–85 (2014).
pubmed: 24388790
doi: 10.1016/j.tips.2013.11.005
Helleboid, S. et al. The identification of naturally occurring neoruscogenin as a bioavailable, potent, and high-affinity agonist of the nuclear receptor RORalpha (NR1F1). J. Biomol. Screen 19, 399–406 (2014).
pubmed: 23896689
doi: 10.1177/1087057113497095