Essential role of systemic iron mobilization and redistribution for adaptive thermogenesis through HIF2-α/hepcidin axis.
Adipocytes
/ metabolism
Adipocytes, Beige
/ metabolism
Adipogenesis
/ physiology
Adipose Tissue, Beige
/ metabolism
Animals
Basic Helix-Loop-Helix Transcription Factors
/ metabolism
Down-Regulation
/ physiology
Erythropoietin
/ metabolism
Hepcidins
/ metabolism
Homeostasis
/ physiology
Iron
/ metabolism
Male
Mice
Mice, Inbred C57BL
Mitochondria
/ metabolism
Signal Transduction
/ physiology
Thermogenesis
/ physiology
HIF2-α
adaptive thermogenesis
hepcidin
hypoxia
iron
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
05 10 2021
05 10 2021
Historique:
accepted:
30
08
2021
entrez:
1
10
2021
pubmed:
2
10
2021
medline:
15
12
2021
Statut:
ppublish
Résumé
Iron is an essential biometal, but is toxic if it exists in excess. Therefore, iron content is tightly regulated at cellular and systemic levels to meet metabolic demands but to avoid toxicity. We have recently reported that adaptive thermogenesis, a critical metabolic pathway to maintain whole-body energy homeostasis, is an iron-demanding process for rapid biogenesis of mitochondria. However, little information is available on iron mobilization from storage sites to thermogenic fat. This study aimed to determine the iron-regulatory network that underlies beige adipogenesis. We hypothesized that thermogenic stimulus initiates the signaling interplay between adipocyte iron demands and systemic iron liberation, resulting in iron redistribution into beige fat. To test this hypothesis, we induced reversible activation of beige adipogenesis in C57BL/6 mice by administering a β3-adrenoreceptor agonist CL 316,243 (CL). Our results revealed that CL stimulation induced the iron-regulatory protein-mediated iron import into adipocytes, suppressed hepcidin transcription, and mobilized iron from the spleen. Mechanistically, CL stimulation induced an acute activation of hypoxia-inducible factor 2-α (HIF2-α), erythropoietin production, and splenic erythroid maturation, leading to hepcidin suppression. Disruption of systemic iron homeostasis by pharmacological HIF2-α inhibitor PT2385 or exogenous administration of hepcidin-25 significantly impaired beige fat development. Our findings suggest that securing iron availability via coordinated interplay between renal hypoxia and hepcidin down-regulation is a fundamental mechanism to activate adaptive thermogenesis. It also provides an insight into the effects of adaptive thermogenesis on systemic iron mobilization and redistribution.
Identifiants
pubmed: 34593646
pii: 2109186118
doi: 10.1073/pnas.2109186118
pmc: PMC8501873
pii:
doi:
Substances chimiques
Basic Helix-Loop-Helix Transcription Factors
0
Hepcidins
0
Erythropoietin
11096-26-7
endothelial PAS domain-containing protein 1
1B37H0967P
Iron
E1UOL152H7
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIGMS NIH HHS
ID : P20 GM104320
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK079209
Pays : United States
Organisme : NICHD NIH HHS
ID : R21 HD094273
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM119770
Pays : United States
Déclaration de conflit d'intérêts
The authors declare no competing interest.
Références
J Clin Invest. 2015 Feb;125(2):478-86
pubmed: 25642708
EMBO J. 2004 Jan 28;23(2):386-95
pubmed: 14726953
Int J Obes (Lond). 2020 Jun;44(6):1291-1300
pubmed: 31974407
J Biochem Biophys Methods. 2004 May 31;59(2):195-200
pubmed: 15163531
Int J Obes (Lond). 2010 Dec;34(12):1772-4
pubmed: 20877286
Diabetes. 2009 Jul;58(7):1526-31
pubmed: 19401428
Nat Genet. 2014 Jul;46(7):678-84
pubmed: 24880340
Nature. 2016 Apr 7;532(7597):112-6
pubmed: 27027295
Cell Metab. 2009 Oct;10(4):324-35
pubmed: 19808025
Obesity (Silver Spring). 2014 Mar;22(3):836-41
pubmed: 23512600
Front Cell Dev Biol. 2020 Nov 05;8:572459
pubmed: 33251209
Blood. 2008 Aug 15;112(4):1503-9
pubmed: 18539898
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12028-33
pubmed: 18685102
J Clin Invest. 2012 Oct;122(10):3529-40
pubmed: 22996660
Cell Metab. 2013 Feb 5;17(2):271-81
pubmed: 23395173
J Biol Chem. 2017 Oct 13;292(41):16810-16816
pubmed: 28842500
Neurobiol Dis. 2015 Sep;81:66-75
pubmed: 25771171
J Trace Elem Med Biol. 2015 Apr;30:195-201
pubmed: 25467855
Cell Mol Gastroenterol Hepatol. 2018 Jan 09;5(3):319-331
pubmed: 29552621
J Obes. 2018 May 2;2018:5789647
pubmed: 29854439
Ann N Y Acad Sci. 2004 Mar;1012:1-13
pubmed: 15105251
J Biol Chem. 2016 Sep 30;291(40):20827-20837
pubmed: 27497435
Curr Opin Hematol. 2015 May;22(3):199-205
pubmed: 25710710
J Nutr. 2021 Oct 1;151(10):2967-2975
pubmed: 34383942
J Clin Invest. 2018 Apr 2;128(4):1317-1325
pubmed: 29480820
J Biol Chem. 2015 Oct 30;290(44):26476-90
pubmed: 26370079
Physiol Rev. 2004 Jan;84(1):277-359
pubmed: 14715917
Mol Biol Cell. 2007 Jul;18(7):2569-78
pubmed: 17475779
FEBS Lett. 2018 Feb;592(3):394-401
pubmed: 29355933
Int J Obes (Lond). 2018 Apr;42(4):939-945
pubmed: 29359735
Biochim Biophys Acta. 2012 Sep;1823(9):1468-83
pubmed: 22610083
J Vis Exp. 2014 Dec 03;(94):
pubmed: 25548934
Biochem J. 1994 Nov 15;304 ( Pt 1):1-11
pubmed: 7998919
J Clin Invest. 2015 Sep;125(9):3681-91
pubmed: 26301810
Blood. 2017 Jul 6;130(1):73-83
pubmed: 28438754
N Engl J Med. 2009 Apr 9;360(15):1500-8
pubmed: 19357405
Bioinformatics. 2009 May 1;25(9):1105-11
pubmed: 19289445
Trends Endocrinol Metab. 2018 Mar;29(3):191-200
pubmed: 29366777
Obesity (Silver Spring). 2008 Oct;16(10):2356-61
pubmed: 18719644
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Adv Sci (Weinh). 2020 Apr 24;7(12):1903366
pubmed: 32596110
Diabetes Care. 2013 Feb;36(2):309-15
pubmed: 22961568
J Biol Chem. 2017 Aug 4;292(31):12744-12753
pubmed: 28615439
J Biol Chem. 2016 Sep 23;291(39):20551-62
pubmed: 27489163
Nat Commun. 2017 Nov 3;8(1):1287
pubmed: 29097656
J Biol Chem. 2019 Apr 5;294(14):5487-5495
pubmed: 30709903
Nutrients. 2014 Sep 11;6(9):3587-600
pubmed: 25215659
Int J Sports Med. 2017 Dec;38(14):1049-1060
pubmed: 29161748
Cell Metab. 2016 Sep 13;24(3):402-419
pubmed: 27568548
Blood. 2015 Oct 22;126(17):2031-7
pubmed: 26276665
Cryobiology. 2015 Dec;71(3):398-404
pubmed: 26475491
Blood. 2013 Feb 21;121(8):e43-9
pubmed: 23287863
Eur J Hum Genet. 2013 Apr;21(4):410-4
pubmed: 22929029
J Biol Chem. 2000 Nov 24;275(47):36708-12
pubmed: 10978328
Cell Metab. 2013 Feb 5;17(2):282-90
pubmed: 23395174
Science. 2004 Dec 17;306(5704):2090-3
pubmed: 15514116
Mol Cell Biol. 2015 Nov 16;36(3):376-93
pubmed: 26572826
FASEB J. 2015 Apr;29(4):1529-39
pubmed: 25550467
Am J Physiol Regul Integr Comp Physiol. 2015 Feb 15;308(4):R330-5
pubmed: 25519735
Cell Metab. 2005 Dec;2(6):399-409
pubmed: 16330325
JCI Insight. 2017 Jul 20;2(14):
pubmed: 28724789
Cell Rep. 2013 Jan 31;3(1):237-45
pubmed: 23318259
Nat Chem Biol. 2006 Aug;2(8):406-14
pubmed: 16850017
Annu Rev Nutr. 2014;34:77-94
pubmed: 24995692
Cancer Res. 2016 Sep 15;76(18):5491-500
pubmed: 27635045
Physiol Rev. 2013 Oct;93(4):1721-41
pubmed: 24137020
Adv Nutr. 2017 Jan 17;8(1):126-136
pubmed: 28096133
N Engl J Med. 2009 Apr 9;360(15):1509-17
pubmed: 19357406
Blood. 2018 Oct 4;132(14):1473-1477
pubmed: 30097509
Stem Cells Int. 2016;2016:6067349
pubmed: 27073398
J Biol Chem. 2021 Jan-Jun;296:100452
pubmed: 33631196
J Biol Chem. 2011 Apr 8;286(14):12524-32
pubmed: 21296882
Blood. 2005 Aug 1;106(3):1084-91
pubmed: 15831703
Blood. 2013 Aug 29;122(9):1658-68
pubmed: 23777768
PLoS One. 2017 Mar 13;12(3):e0173661
pubmed: 28288167
Trends Biochem Sci. 2008 Nov;33(11):526-34
pubmed: 18809331