Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism.
Atherosclerosis
Gut microbiome
Propionic acid
Journal
European heart journal
ISSN: 1522-9645
Titre abrégé: Eur Heart J
Pays: England
ID NLM: 8006263
Informations de publication
Date de publication:
10 02 2022
10 02 2022
Historique:
received:
29
01
2021
revised:
30
06
2021
accepted:
01
09
2021
pubmed:
2
10
2021
medline:
1
4
2022
entrez:
1
10
2021
Statut:
ppublish
Résumé
Atherosclerotic cardiovascular disease (ACVD) is a major cause of mortality and morbidity worldwide, and increased low-density lipoproteins (LDLs) play a critical role in development and progression of atherosclerosis. Here, we examined for the first time gut immunomodulatory effects of the microbiota-derived metabolite propionic acid (PA) on intestinal cholesterol metabolism. Using both human and animal model studies, we demonstrate that treatment with PA reduces blood total and LDL cholesterol levels. In apolipoprotein E-/- (Apoe-/-) mice fed a high-fat diet (HFD), PA reduced intestinal cholesterol absorption and aortic atherosclerotic lesion area. Further, PA increased regulatory T-cell numbers and interleukin (IL)-10 levels in the intestinal microenvironment, which in turn suppressed the expression of Niemann-Pick C1-like 1 (Npc1l1), a major intestinal cholesterol transporter. Blockade of IL-10 receptor signalling attenuated the PA-related reduction in total and LDL cholesterol and augmented atherosclerotic lesion severity in the HFD-fed Apoe-/- mice. To translate these preclinical findings to humans, we conducted a randomized, double-blinded, placebo-controlled human study (clinical trial no. NCT03590496). Oral supplementation with 500 mg of PA twice daily over the course of 8 weeks significantly reduced LDL [-15.9 mg/dL (-8.1%) vs. -1.6 mg/dL (-0.5%), P = 0.016], total [-19.6 mg/dL (-7.3%) vs. -5.3 mg/dL (-1.7%), P = 0.014] and non-high-density lipoprotein cholesterol levels [PA vs. placebo: -18.9 mg/dL (-9.1%) vs. -0.6 mg/dL (-0.5%), P = 0.002] in subjects with elevated baseline LDL cholesterol levels. Our findings reveal a novel immune-mediated pathway linking the gut microbiota-derived metabolite PA with intestinal Npc1l1 expression and cholesterol homeostasis. The results highlight the gut immune system as a potential therapeutic target to control dyslipidaemia that may introduce a new avenue for prevention of ACVDs.
Identifiants
pubmed: 34597388
pii: 6379035
doi: 10.1093/eurheartj/ehab644
pmc: PMC9097250
doi:
Substances chimiques
Apolipoproteins E
0
Cholesterol, LDL
0
Propionates
0
Cholesterol
97C5T2UQ7J
Banques de données
ClinicalTrials.gov
['NCT03590496']
Types de publication
Journal Article
Randomized Controlled Trial
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
518-533Subventions
Organisme : NHLBI NIH HHS
ID : P01 HL147823
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL103866
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2021. For permissions, please email: journals.permissions@oup.com.
Références
Physiol Rep. 2019 Feb;7(4):e14005
pubmed: 30810289
PLoS One. 2013 Apr 22;8(4):e61217
pubmed: 23630581
Nat Methods. 2013 Nov;10(11):1096-8
pubmed: 24056875
Int Immunol. 2000 Feb;12(2):133-9
pubmed: 10653848
Circ Res. 2015 Jan 30;116(3):448-55
pubmed: 25599331
Eur Heart J. 2017 Oct 14;38(39):2948-2956
pubmed: 29020409
Development. 2015 Sep 15;142(18):3113-25
pubmed: 26395140
J Am Coll Cardiol. 2019 Apr 30;73(16):2089-2105
pubmed: 31023434
N Engl J Med. 2019 Oct 17;381(16):1557-1567
pubmed: 31618541
J Am Coll Cardiol. 2015 Jun 2;65(21):2291-8
pubmed: 26022817
Nat Med. 2013 May;19(5):576-85
pubmed: 23563705
Nat Microbiol. 2018 Dec;3(12):1461-1471
pubmed: 30397344
J Dairy Sci. 2012 Apr;95(4):1645-54
pubmed: 22459813
Arterioscler Thromb Vasc Biol. 2018 Sep;38(9):2225-2235
pubmed: 29976769
Cell. 2020 Mar 19;180(6):1067-1080.e16
pubmed: 32160527
J Lipid Res. 2010 May;51(5):1101-12
pubmed: 20040631
PLoS One. 2016 Jun 14;11(6):e0156229
pubmed: 27299860
Circulation. 2020 Apr 28;141(17):1393-1403
pubmed: 32093510
Cell. 2018 Nov 15;175(5):1307-1320.e22
pubmed: 30392957
Physiol Genomics. 2016 Nov 1;48(11):826-834
pubmed: 27664183
Science. 2013 Aug 2;341(6145):569-73
pubmed: 23828891
Cell. 2014 Jan 16;156(1-2):84-96
pubmed: 24412651
Nature. 2013 Dec 19;504(7480):451-5
pubmed: 24226773
Cell. 2015 Dec 17;163(7):1585-95
pubmed: 26687352
Circ Res. 2019 Jan 4;124(1):94-100
pubmed: 30582442
Science. 2004 Feb 20;303(5661):1201-4
pubmed: 14976318
N Engl J Med. 1998 Jun 4;338(23):1650-6
pubmed: 9614255
Eur Heart J. 2020 Mar 14;41(11):1157-1163
pubmed: 31901939
Cell. 2020 Mar 5;180(5):862-877.e22
pubmed: 32142679
Lancet. 2019 Dec 14;394(10215):2173-2183
pubmed: 31810609
Circulation. 2019 Mar 12;139(11):1407-1421
pubmed: 30586752
J Clin Invest. 2013 Mar;123(3):1323-34
pubmed: 23426179
Nature. 2019 Feb;566(7742):115-119
pubmed: 30700910
Eur J Clin Nutr. 2012 Aug;66(8):950-6
pubmed: 22617277
Arch Dermatol. 2002 Oct;138(10):1341-6
pubmed: 12374540
Sci Transl Med. 2019 Apr 24;11(489):
pubmed: 31019023
Nature. 2011 Apr 7;472(7341):57-63
pubmed: 21475195
Eur Heart J. 2017 Aug 21;38(32):2459-2472
pubmed: 28444290
Cell. 2016 Jun 2;165(6):1332-1345
pubmed: 27259147
Arterioscler Thromb Vasc Biol. 2018 Oct;38(10):2318-2326
pubmed: 29903735
Circulation. 2019 Jan 29;139(5):647-659
pubmed: 30586712
Eur Heart J. 2020 Jan 1;41(1):111-188
pubmed: 31504418
Nat Commun. 2017 Oct 10;8(1):845
pubmed: 29018189
Immunity. 2015 Oct 20;43(4):817-29
pubmed: 26488817
Eur Heart J. 2016 Nov 7;37(42):3232-3245
pubmed: 27523477
J Biol Chem. 2003 Sep 5;278(36):33920-7
pubmed: 12819193
N Engl J Med. 2013 Apr 25;368(17):1575-84
pubmed: 23614584