Complex small-world regulatory networks emerge from the 3D organisation of the human genome.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
01 10 2021
Historique:
received: 27 05 2021
accepted: 30 08 2021
entrez: 2 10 2021
pubmed: 3 10 2021
medline: 25 2 2023
Statut: epublish

Résumé

The discovery that overexpressing one or a few critical transcription factors can switch cell state suggests that gene regulatory networks are relatively simple. In contrast, genome-wide association studies (GWAS) point to complex phenotypes being determined by hundreds of loci that rarely encode transcription factors and which individually have small effects. Here, we use computer simulations and a simple fitting-free polymer model of chromosomes to show that spatial correlations arising from 3D genome organisation naturally lead to stochastic and bursty transcription as well as complex small-world regulatory networks (where the transcriptional activity of each genomic region subtly affects almost all others). These effects require factors to be present at sub-saturating levels; increasing levels dramatically simplifies networks as more transcription units are pressed into use. Consequently, results from GWAS can be reconciled with those involving overexpression. We apply this pan-genomic model to predict patterns of transcriptional activity in whole human chromosomes, and, as an example, the effects of the deletion causing the diGeorge syndrome.

Identifiants

pubmed: 34599163
doi: 10.1038/s41467-021-25875-y
pii: 10.1038/s41467-021-25875-y
pmc: PMC8486811
doi:

Substances chimiques

Chromatin 0
Polymers 0
Transcription Factors 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5756

Informations de copyright

© 2021. The Author(s).

Références

Chromosome Res. 2011 Jan;19(1):37-51
pubmed: 21274616
Chromosome Res. 2017 Mar;25(1):1-4
pubmed: 28155082
Cell. 2017 Oct 5;171(2):305-320.e24
pubmed: 28985562
Nature. 2014 Mar 27;507(7493):455-461
pubmed: 24670763
Cell. 1987 Dec 24;51(6):987-1000
pubmed: 3690668
Cell. 2016 Jul 14;166(2):358-368
pubmed: 27293191
BMC Genomics. 2016 Mar 22;17:252
pubmed: 27004515
Methods. 2019 Apr 15;159-160:177-182
pubmed: 30716396
Nucleic Acids Res. 2018 Feb 28;46(4):1724-1740
pubmed: 29216379
Annu Rev Biophys. 2010;39:43-59
pubmed: 20192769
Cell. 2014 Dec 18;159(7):1665-80
pubmed: 25497547
Mol Cell. 2019 Jun 20;74(6):1110-1122
pubmed: 31226276
Bioessays. 2016 Apr;38(4):333-43
pubmed: 26853531
Nature. 2017 Mar 23;543(7646):519-524
pubmed: 28273065
Cell Rep. 2016 May 31;15(9):2038-49
pubmed: 27210764
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16173-8
pubmed: 22988072
Nat Genet. 2015 Jun;47(6):598-606
pubmed: 25938943
Mol Cell. 2016 Apr 21;62(2):237-247
pubmed: 27067601
Sci Adv. 2021 Feb 10;7(7):
pubmed: 33568486
Phys Rev Lett. 2017 Sep 29;119(13):138101
pubmed: 29341686
PLoS One. 2008 Apr 30;3(4):e0002051
pubmed: 18446219
PLoS Comput Biol. 2018 Apr 30;14(4):e1006098
pubmed: 29708965
Mol Cell. 2019 Nov 7;76(3):453-472.e8
pubmed: 31519520
Mol Biol Cell. 2006 Jul;17(7):2910-20
pubmed: 16624866
Mol Cell. 2018 Nov 15;72(4):786-797.e11
pubmed: 30344096
Cell. 2016 Nov 17;167(5):1369-1384.e19
pubmed: 27863249
Oncogene. 2005 Apr 18;24(17):2899-908
pubmed: 15838523
Mol Cell. 2019 Aug 8;75(3):549-561.e7
pubmed: 31398323
Nature. 2012 Sep 6;489(7414):57-74
pubmed: 22955616
Proc Natl Acad Sci U S A. 2018 May 8;115(19):E4368-E4376
pubmed: 29632207
Mol Biol Cell. 2017 Jul 7;28(14):1997-2009
pubmed: 28615317
Cell. 2019 Mar 7;176(6):1502-1515.e10
pubmed: 30799036
PLoS Genet. 2014 Jan 30;10(1):e1004126
pubmed: 24497842
Science. 2011 Apr 22;332(6028):472-4
pubmed: 21415320
Nucleic Acids Res. 2011 Nov 1;39(20):8677-88
pubmed: 21785136
Cell. 2017 Jun 15;169(7):1177-1186
pubmed: 28622505
Nat Immunol. 2018 Sep;19(9):932-941
pubmed: 30127433
PLoS One. 2015 Jul 22;10(7):e0132542
pubmed: 26201030
Cell. 2019 May 2;177(4):1022-1034.e6
pubmed: 31051098
Curr Biol. 2016 Oct 10;26(19):R895-R898
pubmed: 27728794
Blood. 2019 Dec 12;134(24):2195-2208
pubmed: 31515253
Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):E7841-E7850
pubmed: 28851834
Cell. 2014 Mar 13;156(6):1312-1323
pubmed: 24612990
Nucleic Acids Res. 2016 Jan 4;44(D1):D164-71
pubmed: 26438538
Nat Rev Genet. 2018 Jul;19(7):453-467
pubmed: 29692413
Cell. 2004 Sep 3;118(5):555-66
pubmed: 15339661
Nat Commun. 2015 Jun 18;6:7313
pubmed: 26084584
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):E3605-11
pubmed: 24003126
Nature. 2011 May 5;473(7345):43-9
pubmed: 21441907
Biophys J. 2017 Mar 28;112(6):1085-1093
pubmed: 28355537
Nat Rev Mol Cell Biol. 2015 Apr;16(4):245-57
pubmed: 25757416
Cell. 2007 Nov 30;131(5):861-72
pubmed: 18035408
Nucleic Acids Res. 2016 May 5;44(8):3503-12
pubmed: 27060145
J Phys Condens Matter. 2020 Mar 12;32(31):314002
pubmed: 32175915
Nature. 2013 Oct 3;502(7469):59-64
pubmed: 24067610
Science. 2002 Feb 15;295(5558):1306-11
pubmed: 11847345
Elife. 2021 Jul 09;10:
pubmed: 34240703
Bull Math Biol. 2000 Mar;62(2):247-92
pubmed: 10824430
Nucleic Acids Res. 2018 Nov 2;46(19):9895-9906
pubmed: 30239812
Nature. 2019 Sep;573(7772):45-54
pubmed: 31462772
Science. 1999 Jun 11;284(5421):1790-5
pubmed: 10364545
EMBO J. 1999 Apr 15;18(8):2241-53
pubmed: 10205177
EMBO J. 2012 Nov 28;31(23):4404-14
pubmed: 23103767
Mol Cell. 2020 May 7;78(3):539-553.e8
pubmed: 32213323
Nucleic Acids Res. 2013 May;41(9):4755-64
pubmed: 23519617

Auteurs

C A Brackley (CA)

SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.

N Gilbert (N)

MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK.

D Michieletto (D)

SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK.

A Papantonis (A)

Institute of Pathology, University Medical Center, Georg-August University of Göttingen, 37075, Göttingen, Germany.

M C F Pereira (MCF)

SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.

P R Cook (PR)

Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.

D Marenduzzo (D)

SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK. dmarendu@ph.ed.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH