Flexible and integrated dual carbon sensor for multiplexed detection of nonylphenol and paroxetine in tap water samples.
Carbon spherical shells
Emerging pollutants
Flexible electrochemical sensor
Nonylphenol
Paroxetine
Screen-printed carbon electrodes
Square wave voltammetry
Journal
Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782
Informations de publication
Date de publication:
01 10 2021
01 10 2021
Historique:
received:
10
06
2021
accepted:
10
09
2021
entrez:
2
10
2021
pubmed:
3
10
2021
medline:
3
10
2021
Statut:
epublish
Résumé
Multiplex detection of emerging pollutants is essential to improve quality control of water treatment plants, which requires portable systems capable of real-time monitoring. In this paper we describe a flexible, dual electrochemical sensing device that detects nonylphenol and paroxetine in tap water samples. The platform contains two voltammetric sensors, with different working electrodes that were either pretreated or functionalized. Each working electrode was judiciously tailored to cover the concentration range of interest for nonylphenol and paroxetine, and square wave voltammetry was used for detection. An electrochemical pretreatment with sulfuric acid on the printed electrode enabled a selective detection of nonylphenol in 1.0-10 × 10
Identifiants
pubmed: 34599426
doi: 10.1007/s00604-021-05024-4
pii: 10.1007/s00604-021-05024-4
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
359Subventions
Organisme : fundação de amparo à pesquisa do estado de são paulo
ID : 2020/09587-8
Organisme : fundação de amparo à pesquisa do estado de são paulo
ID : 2016/06139-9
Organisme : fundação de amparo à pesquisa do estado de são paulo
ID : 2019/01777-5
Organisme : fundação de amparo à pesquisa do estado de são paulo
ID : 2018/22214-6
Organisme : fundação de amparo à pesquisa do estado de são paulo
ID : 2016/01919-6
Organisme : conselho nacional de desenvolvimento científico e tecnológico
ID : 164569/2020-0
Organisme : conselho nacional de desenvolvimento científico e tecnológico
ID : 423952/2018-8
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 309370/2021-3
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Références
Silva RR, Raymundo-Pereira PA, Campos AM et al (2020) Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat. Talanta 218:121153. https://doi.org/10.1016/j.talanta.2020.121153
doi: 10.1016/j.talanta.2020.121153
pubmed: 32797908
Baccarin M, Ciciliati M, Oliveira ON et al (2020) Pen sensor made with silver nanoparticles decorating graphite-polyurethane electrodes to detect bisphenol-A in tap and river water samples. Mater Sci Eng C 114:110989. https://doi.org/10.1016/j.msec.2020.110989
doi: 10.1016/j.msec.2020.110989
Raymundo-Pereira PA, Gomes NO, Carvalho JHS et al (2020) Simultaneous Detection of Quercetin and Carbendazim in Wine Samples Using Disposable Electrochemical Sensors. ChemElectroChem 7:3074–3081. https://doi.org/10.1002/celc.202000788
doi: 10.1002/celc.202000788
Raymundo-Pereira PA, Gomes NO, Shimizu FM et al (2020) Selective and sensitive multiplexed detection of pesticides in food samples using wearable, flexible glove-embedded non-enzymatic sensors. Chem Eng J 408:127279. https://doi.org/10.1016/j.cej.2020.127279
doi: 10.1016/j.cej.2020.127279
Ciui B, Tertiş M, Cernat A et al (2018) Finger-Based Printed Sensors Integrated on a Glove for On-Site Screening of Pseudomonas aeruginosa Virulence Factors. Anal Chem 90:7761–7768. https://doi.org/10.1021/acs.analchem.8b01915
doi: 10.1021/acs.analchem.8b01915
pubmed: 29851349
Mishra RK, Sempionatto JR, Li Z et al (2020) Simultaneous detection of salivary Δ9-tetrahydrocannabinol and alcohol using a Wearable Electrochemical Ring Sensor. Talanta 211:120757. https://doi.org/10.1016/j.talanta.2020.120757
doi: 10.1016/j.talanta.2020.120757
pubmed: 32070607
Moonla C, Goud KY, Teymourian H et al (2020) An integrated microcatheter-based dual-analyte sensor system for simultaneous, real-time measurement of propofol and fentanyl. Talanta 218:121205. https://doi.org/10.1016/j.talanta.2020.121205
doi: 10.1016/j.talanta.2020.121205
pubmed: 32797931
Vargas E, Povedano E, Krishnan S et al (2020) Simultaneous cortisol/insulin microchip detection using dual enzyme tagging. Biosens Bioelectron 167:112512. https://doi.org/10.1016/j.bios.2020.112512
doi: 10.1016/j.bios.2020.112512
pubmed: 32877776
Arduini F, Cinti S, Mazzaracchio V et al (2020) Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. Biosens Bioelectron 156:112033. https://doi.org/10.1016/J.BIOS.2020.112033
doi: 10.1016/J.BIOS.2020.112033
pubmed: 32174547
Govindasamy M, Sriram B, Wang SF, Chang YJ, Rajabathar JR (2020) Highly sensitive determination of cancer toxic mercury ions in biological and human sustenance samples based on green and robust synthesized stannic oxide nanoparticles decorated reduced graphene oxide sheets. Anal Chim Acta 1137:181–190. https://doi.org/10.1016/j.aca.2020.09.014
doi: 10.1016/j.aca.2020.09.014
pubmed: 33153601
Arul P, Huang ST, Gowthaman NSK et al (2021) Electrocatalyst based on Ni-MOF intercalated with amino acid-functionalized graphene nanoplatelets for the determination of endocrine disruptor bisphenol A. Anal Chim Acta 1150:338228. https://doi.org/10.1016/J.ACA.2021.338228
doi: 10.1016/J.ACA.2021.338228
pubmed: 33583553
Govindasamy M, Wang SF, Almahri A, Rajaji U (2021) Effects of sonochemical approach and induced contraction of core–shell bismuth sulfide/graphitic carbon nitride as an efficient electrode materials for electrocatalytic detection of antibiotic drug in foodstuffs. Ultrason Sonochem 72:105445. https://doi.org/10.1016/J.ULTSONCH.2020.105445
doi: 10.1016/J.ULTSONCH.2020.105445
pubmed: 33418401
Rajaji U, Chinnapaiyan S, Chen S-M et al (2021) Design and Fabrication of Yttrium Ferrite Garnet-Embedded Graphitic Carbon Nitride: A Sensitive Electrocatalyst for Smartphone-Enabled Point-of-Care Pesticide (Mesotrione) Analysis in Food Samples. ACS Appl Mater & Interfaces 13:24865–24876. https://doi.org/10.1021/acsami.1c04597
doi: 10.1021/acsami.1c04597
Musa AM, Kiely J, Luxton R, Honeychurch KC (2021) Recent Progress in Screen-printed Electrochemical Sensors and Biosensors for the Detection of Estrogens. TrAC Trends Anal Chem 139:116254. https://doi.org/10.1016/j.trac.2021.116254
doi: 10.1016/j.trac.2021.116254
Hong X, Zhao G, Zhou Y, et al (2021) Risks to aquatic environments posed by 14 pharmaceuticals as illustrated by their effects on zebrafish behaviour. Sci Total Environ 771:145450. https://doi.org/10.1016/j.scitotenv.2021.145450
Gornik T, Carena L, Kosjek T, Vione D (2021) Phototransformation study of the antidepressant paroxetine in surface waters. Sci Total Environ 771:145450. https://doi.org/10.1016/j.scitotenv.2021.145380
doi: 10.1016/j.scitotenv.2021.145380
Lu D, Yu L, Li M et al (2021) Behavioral disorders caused by nonylphenol and strategies for protection. Chemosphere 275:129973. https://doi.org/10.1016/j.chemosphere.2021.129973
doi: 10.1016/j.chemosphere.2021.129973
pubmed: 33639553
Carneiro RB, Gonzalez-Gil L, Londoño YA et al (2020) Acidogenesis is a key step in the anaerobic biotransformation of organic micropollutants. J Hazard Mater 389:121888. https://doi.org/10.1016/j.jhazmat.2019.121888
doi: 10.1016/j.jhazmat.2019.121888
pubmed: 31879099
Song SW, Kim D, Kim J et al (2021) Flexible Nanocellulose-based SERS Substrates for Fast Analysis of Hazardous Materials by Spiral Scanning. J Hazard Mater 414:125160. https://doi.org/10.1016/j.jhazmat.2021.125160
doi: 10.1016/j.jhazmat.2021.125160
pubmed: 33652216
Martín-Pozo L, de Alarcón-Gómez B, Rodríguez-Gómez R et al (2019) Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. Talanta 192:508–533. https://doi.org/10.1016/j.talanta.2018.09.056
doi: 10.1016/j.talanta.2018.09.056
pubmed: 30348425
Yu M, Wu L, Miao J et al (2019) Titanium dioxide and polypyrrole molecularly imprinted polymer nanocomposites based electrochemical sensor for highly selective detection of p-nonylphenol. Anal Chim Acta 1080:84–94. https://doi.org/10.1016/j.aca.2019.06.053
doi: 10.1016/j.aca.2019.06.053
pubmed: 31409478
Cen S, Chen Y, Tan J et al (2021) The fabrication of a highly ordered molecularly imprinted mesoporous silica for solid-phase extraction of nonylphenol in textile samples. Microchem J 164:105954. https://doi.org/10.1016/j.microc.2021.105954
doi: 10.1016/j.microc.2021.105954
Oghli AH, Soleymanpour A (2020) Polyoxometalate/reduced graphene oxide modified pencil graphite sensor for the electrochemical trace determination of paroxetine in biological and pharmaceutical media. Mater Sci Eng C 108:110407. https://doi.org/10.1016/j.msec.2019.110407
doi: 10.1016/j.msec.2019.110407
Fuentes A, Pineda M, Venkata K (2018) Comprehension of Top 200 Prescribed Drugs in the US as a Resource for Pharmacy Teaching Training and Practice. Pharmacy 6:43. https://doi.org/10.3390/pharmacy6020043
doi: 10.3390/pharmacy6020043
pmcid: 6025009
Soares A, Guieysse B, Jefferson B et al (2008) Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 34:1033–1049. https://doi.org/10.1016/j.envint.2008.01.004
doi: 10.1016/j.envint.2008.01.004
pubmed: 18282600
Miller JN (1991) Basic statistical methods for analytical chemistry. Part 2. calibration and regression methods. A review Analyst 116:3–14. https://doi.org/10.1039/AN9911600003
doi: 10.1039/AN9911600003
Miller JC, Miller JN (1988) Basic Statistical Methods for Analytical Chemistry Part I; Statistics of Repeated Measurements. A review. Analyst 113:1351–1356
doi: 10.1039/an9881301351
Lioupi A, Kabir A, Furton KG, Samanidou V (2019) Fabric phase sorptive extraction for the isolation of five common antidepressants from human urine prior to HPLC-DAD analysis. J Chromatogr B Anal Technol Biomed Life Sci 1118:171–179. https://doi.org/10.1016/j.jchromb.2019.04.045
doi: 10.1016/j.jchromb.2019.04.045
Pacheco-Fernández I, Najafi A, Pino V et al (2016) Utilization of highly robust and selective crosslinked polymeric ionic liquid-based sorbent coatings in direct-immersion solid-phase microextraction and high-performance liquid chromatography for determining polar organic pollutants in waters. Talanta 158:125–133. https://doi.org/10.1016/j.talanta.2016.05.041
doi: 10.1016/j.talanta.2016.05.041
pubmed: 27343586
Xiao Q, Li Y, Ouyang H et al (2006) High-performance liquid chromatographic analysis of bisphenol A and 4-nonylphenol in serum, liver and testis tissues after oral administration to rats and its application to toxicokinetic study. J Chromatogr B Anal Technol Biomed Life Sci 830:322–329. https://doi.org/10.1016/j.jchromb.2005.11.024
doi: 10.1016/j.jchromb.2005.11.024
Campos AM, Raymundo-Pereira PA, Mendonça CD et al (2018) Size Control of Carbon Spherical Shells for Sensitive Detection of Paracetamol in Sweat, Saliva, and Urine. ACS Appl Nano Mater 1:654–661. https://doi.org/10.1021/acsanm.7b00139
doi: 10.1021/acsanm.7b00139
Raymundo-Pereira PA, Gomes NO, Machado SAS, Oliveira ON (2019) Simultaneous, ultrasensitive detection of hydroquinone, paracetamol and estradiol for quality control of tap water with a simple electrochemical method. J Electroanal Chem 848:113319. https://doi.org/10.1016/j.jelechem.2019.113319
doi: 10.1016/j.jelechem.2019.113319
Yu L, Falco C, Weber J et al (2012) Carbohydrate-derived hydrothermal carbons: A thorough characterization study. Langmuir 33:12373–12383. https://doi.org/10.1021/la3024277
doi: 10.1021/la3024277
Xia X, Zhang Y, Fan Z et al (2015) Novel Metal@Carbon Spheres Core-Shell Arrays by Controlled Self-Assembly of Carbon Nanospheres: A Stable and Flexible Supercapacitor Electrode. Adv Energy Mater 5:1401709. https://doi.org/10.1002/aenm.201401709
doi: 10.1002/aenm.201401709
Lu Q, Zhang W, Wang Z et al (2013) A facile electrochemical sensor for nonylphenol determination based on the enhancement effect of cetyltrimethylammonium bromide. Sensors (Switzerland) 13:758–768. https://doi.org/10.3390/s130100758
doi: 10.3390/s130100758
Brycht M, Skrzypek S, Karadas-Bakirhan N et al (2015) Voltammetric behavior and determination of antidepressant drug paroxetine at carbon-based electrodes. Ionics (Kiel) 21:2345–2354. https://doi.org/10.1007/s11581-015-1390-6
doi: 10.1007/s11581-015-1390-6
Rutkowska M, Namieśnik J, Konieczka P (2020) Production of certified reference materials - homogeneity and stability study based on the determination of total mercury and methylmercury. Microchem J 153:104338. https://doi.org/10.1016/j.microc.2019.104338
doi: 10.1016/j.microc.2019.104338
Tran TTH, Kim J, Rosli N et al (2019) Certification and stability assessment of recombinant human growth hormone as a certified reference material for protein quantification. J Chromatogr B Anal Technol Biomed Life Sci 1126–1127:121732. https://doi.org/10.1016/j.jchromb.2019.121732
doi: 10.1016/j.jchromb.2019.121732
Lee J, Kim B, Lee SY et al (2019) Development of an infant formula certified reference material for the analysis of organic nutrients. Food Chem 298:125088. https://doi.org/10.1016/j.foodchem.2019.125088
doi: 10.1016/j.foodchem.2019.125088
pubmed: 31260987
Huang J, Zhang X, Liu S et al (2011) Development of molecularly imprinted electrochemical sensor with titanium oxide and gold nanomaterials enhanced technique for determination of 4-nonylphenol. Sensors Actuators B Chem 152:292–298. https://doi.org/10.1016/j.snb.2010.12.022
doi: 10.1016/j.snb.2010.12.022
David IG, Badea IA, Radu GL (2013) Disposable carbon electrodes as an alternative for the direct voltammetric determination of alkyl phenols from water samples. Turkish J Chem 37:91–100. https://doi.org/10.3906/kim-1203-49
doi: 10.3906/kim-1203-49
Liu X, Feng H, Liu X, Wong DKY (2011) Electrocatalytic detection of phenolic estrogenic compounds at NiTPPS|carbon nanotube composite electrodes. Anal Chim Acta 689:212–218. https://doi.org/10.1016/j.aca.2011.01.037
doi: 10.1016/j.aca.2011.01.037
pubmed: 21397076
Ai J, Guo H, Xue R et al (2018) A self-probing, gate-controlled, molecularly imprinted electrochemical sensor for ultrasensitive determination of p-nonylphenol. Electrochem Commun 89:1–5. https://doi.org/10.1016/J.ELECOM.2018.02.008
doi: 10.1016/J.ELECOM.2018.02.008
Xue F, Gao Z-Y, Sun X-M et al (2015) Electrochemical Determination of Environmental Hormone Nonylphenol Based on Composite Film Modified Gold Electrode. J Electrochem Soc 162:H338–H344. https://doi.org/10.1149/2.0271506jes
doi: 10.1149/2.0271506jes
Erk N, Biryol J (2003) Voltammetric and HPLC techniques for the determination of paroxetine hydrochloride. Pharmazie 58:699–704
pubmed: 14609280
Ajayi RF, Nxusani E, Douman SF et al (2016) An Amperometric Cytochrome P450–2D6 Biosensor System for the Detection of the Selective Serotonin Reuptake Inhibitors (SSRIs) Paroxetine and Fluvoxamine. J Nano Res 44:208–228. https://doi.org/10.4028/www.scientific.net/JNanoR.44.208
doi: 10.4028/www.scientific.net/JNanoR.44.208