Deep learning analysis of resting electrocardiograms for the detection of myocardial dysfunction, hypertrophy, and ischaemia: a systematic review.

Artificial intelligence Coronary artery disease Deep learning Electrocardiogram Heart failure Left ventricular hypertrophy Myocardial infarction

Journal

European heart journal. Digital health
ISSN: 2634-3916
Titre abrégé: Eur Heart J Digit Health
Pays: England
ID NLM: 101778323

Informations de publication

Date de publication:
Sep 2021
Historique:
received: 30 01 2021
revised: 14 04 2021
entrez: 4 10 2021
pubmed: 5 10 2021
medline: 5 10 2021
Statut: epublish

Résumé

The aim of this review was to assess the evidence for deep learning (DL) analysis of resting electrocardiograms (ECGs) to predict structural cardiac pathologies such as left ventricular (LV) systolic dysfunction, myocardial hypertrophy, and ischaemic heart disease. A systematic literature search was conducted to identify published original articles on end-to-end DL analysis of resting ECG signals for the detection of structural cardiac pathologies. Studies were excluded if the ECG was acquired by ambulatory, stress, intracardiac, or implantable devices, and if the pathology of interest was arrhythmic in nature. After duplicate reviewers screened search results, 12 articles met the inclusion criteria and were included. Three articles used DL to detect LV systolic dysfunction, achieving an area under the curve (AUC) of 0.89-0.93 and an accuracy of 98%. One study used DL to detect LV hypertrophy, achieving an AUC of 0.87 and an accuracy of 87%. Six articles used DL to detect acute myocardial infarction, achieving an AUC of 0.88-1.00 and an accuracy of 83-99.9%. Two articles used DL to detect stable ischaemic heart disease, achieving an accuracy of 95-99.9%. Deep learning models, particularly those that used convolutional neural networks, outperformed rules-based models and other machine learning models. Deep learning is a promising technique to analyse resting ECG signals for the detection of structural cardiac pathologies, which has clinical applicability for more effective screening of asymptomatic populations and expedited diagnostic work-up of symptomatic patients at risk for cardiovascular disease.

Identifiants

pubmed: 34604757
doi: 10.1093/ehjdh/ztab048
pii: ztab048
pmc: PMC8482047
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

416-423

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology.

Références

J Am Heart Assoc. 2013 Oct 04;2(5):e000268
pubmed: 24096575
Comput Methods Programs Biomed. 2016 Apr;127:144-64
pubmed: 26775139
Nat Med. 2019 Jan;25(1):70-74
pubmed: 30617318
J Hum Hypertens. 2008 Jul;22(7):460-7
pubmed: 18432258
J Am Coll Cardiol. 2020 Aug 25;76(8):930-941
pubmed: 32819467
IEEE J Biomed Health Inform. 2018 Sep;22(5):1434-1444
pubmed: 29990164
J Am Coll Cardiol. 2017 Aug 29;70(9):1183-1192
pubmed: 28838369
Eur Heart J Cardiovasc Imaging. 2021 Sep 20;22(10):1208-1217
pubmed: 32588036
Comput Biol Med. 2018 Mar 1;94:19-26
pubmed: 29358103
Circ Cardiovasc Qual Outcomes. 2019 Sep;12(9):e005289
pubmed: 31525078
IEEE J Biomed Health Inform. 2017 Jan;21(1):4-21
pubmed: 28055930
Comput Methods Programs Biomed. 2020 Mar;185:105138
pubmed: 31669959
Circulation. 2004 Jun 29;109(25):3176-81
pubmed: 15184280
Circulation. 1992 Mar;85(3):1221-8
pubmed: 1537123
N Engl J Med. 1991 Dec 19;325(25):1767-73
pubmed: 1834940
CJEM. 2014 Mar;16(2):94-105
pubmed: 24626114
J Electrocardiol. 2005 Jul;38(3):235-8
pubmed: 16003708
Europace. 2020 Mar 1;22(3):412-419
pubmed: 31800031
J Am Coll Cardiol. 2017 Jul 4;70(1):1-25
pubmed: 28527533
N Engl J Med. 1992 Sep 3;327(10):685-91
pubmed: 1463530
J Am Coll Cardiol. 2014 Apr 1;63(12):1123-1133
pubmed: 24491689
Circulation. 2000 Jun 13;101(23):E215-20
pubmed: 10851218
IEEE J Biomed Health Inform. 2020 Feb;24(2):503-514
pubmed: 30990200
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
PLoS One. 2019 Jan 9;14(1):e0210103
pubmed: 30625197
J Am Coll Cardiol. 2018 Apr 17;71(15):1650-1660
pubmed: 29650121
Nat Med. 2019 Jan;25(1):65-69
pubmed: 30617320
Int J Cardiol. 2006 Jan 13;106(2):232-7
pubmed: 16321696
Korean Circ J. 2019 Jul;49(7):629-639
pubmed: 31074221
JAMA Intern Med. 2020 Nov 1;180(11):1461-1471
pubmed: 32986084
BMJ. 2009 Jul 21;339:b2535
pubmed: 19622551
J Am Coll Cardiol. 2017 Jun 27;69(25):3042-3051
pubmed: 28641794
Congest Heart Fail. 2008 Jul-Aug;14(4 Suppl 1):5-8
pubmed: 18772638
J Healthc Eng. 2013;4(4):465-504
pubmed: 24287428
Circulation. 2003 Aug 26;108(8):977-82
pubmed: 12912813
Exp Mol Med. 2019 Dec 19;51(12):1-9
pubmed: 31857581
Circulation. 2006 Jun 20;113(24):2851-60
pubmed: 16785351
Nat Rev Dis Primers. 2018 Mar 22;4:18014
pubmed: 29565029
JACC Heart Fail. 2018 Jan;6(1):30-40
pubmed: 29284578
J Am Coll Cardiol. 2020 Dec 22;76(25):2982-3021
pubmed: 33309175
JAMA Cardiol. 2019 May 1;4(5):428-436
pubmed: 30942845

Auteurs

Ghalib Al Hinai (G)

Division of Cardiology, Jewish General Hospital, McGill University, 3755 Cote Ste Catherine Rd, E-222, Montreal, QC H3T 1E2, Canada.

Samer Jammoul (S)

Division of Cardiology, Jewish General Hospital, McGill University, 3755 Cote Ste Catherine Rd, E-222, Montreal, QC H3T 1E2, Canada.

Zara Vajihi (Z)

Department of Emergency Medicine, Jewish General Hospital, McGill University, 3755 Cote Ste Catherine Rd, H-126, Montreal, QC H3T 1E2, Canada.

Jonathan Afilalo (J)

Division of Cardiology, Jewish General Hospital, McGill University, 3755 Cote Ste Catherine Rd, E-222, Montreal, QC H3T 1E2, Canada.
Centre for Clinical Epidemiology, Jewish General Hospital, 3755 Cote Ste Catherine Rd, H-411, Montreal, QC H3T 1E2, Canada.

Classifications MeSH