Gitelman-Like Syndrome Caused by Pathogenic Variants in mtDNA.


Journal

Journal of the American Society of Nephrology : JASN
ISSN: 1533-3450
Titre abrégé: J Am Soc Nephrol
Pays: United States
ID NLM: 9013836

Informations de publication

Date de publication:
02 2022
Historique:
received: 03 05 2021
accepted: 06 09 2021
pubmed: 6 10 2021
medline: 5 3 2022
entrez: 5 10 2021
Statut: ppublish

Résumé

Gitelman syndrome is the most frequent hereditary salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. Gitelman syndrome is caused by biallelic pathogenic variants in We identified mitochondrial DNA (mtDNA) variants in three families with Gitelman-like electrolyte abnormalities, then investigated 156 families for variants in Genetic investigations revealed four mtDNA variants in 13 families: m.591C>T ( Pathogenic mtDNA variants in

Sections du résumé

BACKGROUND
Gitelman syndrome is the most frequent hereditary salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. Gitelman syndrome is caused by biallelic pathogenic variants in
METHODS
We identified mitochondrial DNA (mtDNA) variants in three families with Gitelman-like electrolyte abnormalities, then investigated 156 families for variants in
RESULTS
Genetic investigations revealed four mtDNA variants in 13 families: m.591C>T (
CONCLUSION
Pathogenic mtDNA variants in

Identifiants

pubmed: 34607911
pii: 00001751-202202000-00007
doi: 10.1681/ASN.2021050596
pmc: PMC8819995
doi:

Substances chimiques

DNA, Mitochondrial 0
RNA, Transfer, Ile 0
RNA, Transfer, Phe 0
SLC12A3 protein, human 0
Solute Carrier Family 12, Member 3 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

305-325

Subventions

Organisme : Department of Health
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Cancer Research UK
Pays : United Kingdom
Organisme : Medical Research Council
Pays : United Kingdom

Commentaires et corrections

Type : CommentIn

Informations de copyright

Copyright © 2022 by the American Society of Nephrology.

Références

Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, et al.: Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet 12: 24–30, 1996
Blanchard A, Bockenhauer D, Bolignano D, Calò LA, Cosyns E, Devuyst O, et al.: Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 91: 24–33, 2017
Vargas-Poussou R, Dahan K, Kahila D, Venisse A, Riveira-Munoz E, Debaix H, et al.: Spectrum of mutations in Gitelman syndrome. J Am Soc Nephrol 22: 693–703, 2011
Downie ML, Lopez Garcia SC, Kleta R, Bockenhauer D: Inherited tubulopathies of the kidney: insights from genetics. Clin J Am Soc Nephrol 16: 620–630, 2020
Viering DHHM, de Baaij JHF, Walsh SB, Kleta R, Bockenhauer D: Genetic causes of hypomagnesemia, a clinical overview. Pediatr Nephrol 32: 1123–1135, 2017
van der Made CI, Hoorn EJ, de la Faille R, Karaaslan H, Knoers NV, Hoenderop JG, et al.: Hypomagnesemia as first clinical manifestation of ADTKD-HNF1B: a case series and literature review. Am J Nephrol 42: 85–90, 2015
Chinnery PF: Primary Mitochondrial disorders overview. In: GeneReviews®, edited by Adam MP AH, Pagon RA, et al.: Seattle, Washington, University of Washington, 2000
Goto Y, Itami N, Kajii N, Tochimaru H, Endo M, Horai S: Renal tubular involvement mimicking Bartter syndrome in a patient with Kearns-Sayre syndrome. J Pediatr 116: 904–910, 1990
Wilson FH, Hariri A, Farhi A, Zhao H, Petersen KF, Toka HR, et al.: A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science 306: 1190–1194, 2004
Giordano C, Powell H, Leopizzi M, De Curtis M, Travaglini C, Sebastiani M, et al.: Fatal congenital myopathy and gastrointestinal pseudo-obstruction due to POLG1 mutations. Neurology 72: 1103–1105, 2009
Zhou Y, Zhong C, Yang Q, Zhang G, Yang H, Li Q, et al.: Novel SARS2 variants identified in a Chinese girl with HUPRA syndrome. Mol Genet Genomic Med 9: e1650, 2021
Connor TM, Hoer S, Mallett A, Gale DP, Gomez-Duran A, Posse V, et al.: Mutations in mitochondrial DNA causing tubulointerstitial kidney disease. PLoS Genet 13: e1006620, 2017
Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26: 589–595, 2010
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al.; 1000 Genome Project Data Processing Subgroup: The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079, 2009
Martin AR, Williams E, Foulger RE, Leigh S, Daugherty LC, Niblock O, et al.: PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat Genet 51: 1560–1565, 2019
Ekici AB, Hackenbeck T, Morinière V, Pannes A, Buettner M, Uebe S, et al.: Renal fibrosis is the common feature of autosomal dominant tubulointerstitial kidney diseases caused by mutations in mucin 1 or uromodulin. Kidney Int 86: 589–599, 2014
Yarham JW, McFarland R, Taylor RW, Elson JL: A proposed consensus panel of organisms for determining evolutionary conservation of mt-tRNA point mutations. Mitochondrion 12: 533–538, 2012
Wong LC, Chen T, Wang J, Tang S, Schmitt ES, Landsverk M, et al.: Interpretation of mitochondrial tRNA variants. Genet Med 22: 917–926, 2020
Ellard S, Baple E, Callaway A, Berry I, Forrester N, Turnbull C, et al.: ACGS Best Practice Guidelines for Variant Classification in Rare Disease 2020, ACGS, 2020. Accessed March 1, 2021.
Bech AP, Wetzels JFM, Nijenhuis T: Reference values of renal tubular function tests are dependent on age and kidney function. Physiol Rep 5: e13542, 2017
Colussi G, Bettinelli A, Tedeschi S, De Ferrari ME, Syrén ML, Borsa N, et al.: A thiazide test for the diagnosis of renal tubular hypokalemic disorders. Clin J Am Soc Nephrol 2: 454–460, 2007
Rodenburg RJT: Biochemical diagnosis of mitochondrial disorders. J Inherit Metab Dis 34: 283–292, 2011
Panneman DM, Wortmann SB, Haaxma CA, van Hasselt PM, Wolf NI, Hendriks Y, et al.: Variants in NGLY1 lead to intellectual disability, myoclonus epilepsy, sensorimotor axonal polyneuropathy and mitochondrial dysfunction. Clin Genet 97: 556–566, 2020
Yépez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, Koňaříková E, et al.: OCR-Stats: robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. PLoS One 13: e0199938, 2018
Pedersen NB, Hofmeister MV, Rosenbaek LL, Nielsen J, Fenton RA: Vasopressin induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter in the distal convoluted tubule. Kidney Int 78: 160–169, 2010
Ashton EJ, Legrand A, Benoit V, Roncelin I, Venisse A, Zennaro MC, et al.: Simultaneous sequencing of 37 genes identified causative mutations in the majority of children with renal tubulopathies. Kidney Int 93: 961–967, 2018
World Health Organization: Global Status Report on Noncommunicable Diseases 2014, 2014. Available at: http://apps.who.int/iris/bitstream/handle/10665/148114/9789241564854_eng.pdf;jsessionid=51B6533AF532336F82399400471FA2AD?sequence=1 . Accessed July 12, 2021.
World Health Organization: Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks, 2009. Available at: https://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf .. Accessed July 12, 2021.
Walsh PR, Tse Y, Ashton E, Iancu D, Jenkins L, Bienias M, et al.: Clinical and diagnostic features of Bartter and Gitelman syndromes. Clin Kidney J 11: 302–309, 2018
, et al. Kidney Disease: Improving Global Outcomes: Autosomal dominant tubulointerstitial kidney disease: Diagnosis, classification, and management. https://kdigo.org/wp-content/uploads/2017/02/KDIGO_ADTKD-2015.pdf. Accessed March 15, 2021
Kunz WS, Kudin A, Vielhaber S, Elger CE, Attardi G, Villani G: Flux control of cytochrome c oxidase in human skeletal muscle. J Biol Chem 275: 27741–27745, 2000
Gnaiger E: Mitochondrial Pathways and Respiratory Control: An Introduction to OXPHOS Analysis. Mitochondr Physiol Network 19.12, Innsbruck, OROBOROS MiPNet Publications, 2014
Reilly RF, Ellison DH: Mammalian distal tubule: Physiology, pathophysiology, and molecular anatomy. Physiol Rev 80: 277–313, 2000
Belostotsky R, Ben-Shalom E, Rinat C, Becker-Cohen R, Feinstein S, Zeligson S, et al.: Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am J Hum Genet 88: 193–200, 2011
Hanna MG, Nelson IP, Morgan-Hughes JA, Wood NW: MELAS: A new disease associated mitochondrial DNA mutation and evidence for further genetic heterogeneity. J Neurol Neurosurg Psychiatry 65: 512–517, 1998
Goto Y, Nonaka I, Horai S: A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348: 651–653, 1990
Melone MA, Tessa A, Petrini S, Lus G, Sampaolo S, di Fede G, et al.: Revelation of a new mitochondrial DNA mutation (G12147A) in a MELAS/MERFF phenotype. Arch Neurol 61: 269–272, 2004
Giordano C, Perli E, Orlandi M, Pisano A, Tuppen HA, He L, et al.: Cardiomyopathies due to homoplasmic mitochondrial tRNA mutations: Morphologic and molecular features. Hum Pathol 44: 1262–1270, 2013
Cox R, Platt J, Chen LC, Tang S, Wong LJ, Enns GM: Leigh syndrome caused by a novel m.4296G>A mutation in mitochondrial tRNA isoleucine. Mitochondrion 12: 258–261, 2012
Gutiérrez Cortés N, Pertuiset C, Dumon E, Börlin M, Hebert-Chatelain E, Pierron D, et al.: Novel mitochondrial DNA mutations responsible for maternally inherited nonsyndromic hearing loss. Hum Mutat 33: 681–689, 2012
Schaller A, Desetty R, Hahn D, Jackson CB, Nuoffer JM, Gallati S, et al.: Impairment of mitochondrial tRNAIle processing by a novel mutation associated with chronic progressive external ophthalmoplegia. Mitochondrion 11: 488–496, 2011
Tzen C-Y, Tsai J-D, Wu T-Y, Chen B-F, Chen M-L, Lin S-P, et al.: Tubulointerstitial nephritis associated with a novel mitochondrial point mutation. Kidney Int 59: 846–854, 2001
D’Aco KE, Manno M, Clarke C, Ganesh J, Meyers KE, Sondheimer N: Mitochondrial tRNA(Phe) mutation as a cause of end-stage renal disease in childhood. Pediatr Nephrol 28: 515–519, 2013
Lorenz R, Ahting U, Betzler C, Heimering S, Borggrafe I, Lange-Sperandio B: Homoplasmy of the mitochondrial DNA mutation m.616T>C leads to mitochondrial tubulointerstitial kidney disease and encephalopathia. Nephron 144:156-160, 2020
Riedhammer KM, Braunisch MC, Günthner R, Wagner M, Hemmer C, Strom TM, et al.: Exome sequencing and identification of phenocopies in patients with clinically presumed hereditary nephropathies. Am J Kidney Dis 76: 460–470, 2020
Zhang C, Wang L, Zhang J, Su XT, Lin DH, Scholl UI, et al.: KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). Proc Natl Acad Sci U S A 111: 11864–11869, 2014
Wang MX, Cuevas CA, Su XT, Wu P, Gao ZX, Lin DH, et al.: Potassium intake modulates the thiazide-sensitive sodium-chloride cotransporter (NCC) activity via the Kir4.1 potassium channel. Kidney Int 93: 893–902, 2018
Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C, Meermeier NP, et al.: Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab 21: 39–50, 2015
Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA, Reichold M, et al.: Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 360: 1960–1970, 2009
Konrad M, Vollmer M, Lemmink HH, VAN DEN Heuvel LPWJ, Jeck N, Vargas-Poussou R, et al.: Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol 11: 1449–1459, 2000
Schlingmann KP, Renigunta A, Hoorn EJ, Forst AL, Renigunta V, Atanasov V, et al.: Defects in KCNJ16 cause a novel tubulopathy with hypokalemia, salt wasting, disturbed acid-base homeostasis, and sensorineural deafness. J Am Soc Nephrol 32: 1498–1512, 2021
Cuevas CA, Su X-T, Wang M-X, Terker AS, Lin D-H, McCormick JA, et al.: Potassium sensing by renal distal tubules requires Kir4.1. J Am Soc Nephrol 28: 1814–1825, 2017
Janssen AG, Scholl U, Domeyer C, Nothmann D, Leinenweber A, Fahlke C: Disease-causing dysfunctions of barttin in Bartter syndrome type IV. J Am Soc Nephrol 20: 145–153, 2009
Chen J-C, Lo Y-F, Lin Y-W, Lin S-H, Huang C-L, Cheng C-J: WNK4 kinase is a physiological intracellular chloride sensor. Proc Natl Acad Sci U S A 116: 4502–4507, 2019
Grimm PR, Coleman R, Delpire E, Welling PA: Constitutively active SPAK causes hyperkalemia by activating NCC and remodeling distal tubules. J Am Soc Nephrol 28: 2597–2606, 2017
Yang S-S, Fang Y-W, Tseng M-H, Chu P-Y, Yu IS, Wu H-C, et al.: Phosphorylation regulates NCC stability and transporter activity in vivo. J Am Soc Nephrol 24: 1587–1597, 2013
Hansell P, Welch WJ, Blantz RC, Palm F: Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin Exp Pharmacol Physiol 40: 123–137, 2013
McCormick JA, Ellison DH: Distal convoluted tubule. Compr Physiol 5: 45–98, 2015
Hall AM, Rhodes GJ, Sandoval RM, Corridon PR, Molitoris BA: In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury. Kidney Int 83: 72–83, 2013
Bagnasco S, Good D, Balaban R, Burg M: Lactate production in isolated segments of the rat nephron. Am J Physiol 248: F522–F526, 1985
Meij IC, Koenderink JB, De Jong JC, De Pont JJ, Monnens LA, Van Den Heuvel LP, et al.: Dominant isolated renal magnesium loss is caused by misrouting of the Na + ,K + -ATPase γ -subunit. Ann N Y Acad Sci 986: 437–443, 2003
Franken GAC, Adella A, Bindels RJM, de Baaij JHF: Mechanisms coupling sodium and magnesium reabsorption in the distal convoluted tubule of the kidney. Acta Physiol (Oxf) 231: e13528, 2021
Geven WB, Monnens LA, Willems HL, Buijs WC, ter Haar BG: Renal magnesium wasting in two families with autosomal dominant inheritance. Kidney Int 31: 1140–1144, 1987
Schlingmann KP, Bandulik S, Mammen C, Tarailo-Graovac M, Holm R, Baumann M, et al.: Germline de novo mutations in ATP1A1 cause renal hypomagnesemia, refractory seizures, and intellectual disability. Am J Hum Genet 103: 808–816, 2018
de Baaij JH, Dorresteijn EM, Hennekam EA, Kamsteeg EJ, Meijer R, Dahan K, et al.: Recurrent FXYD2 p.Gly41Arg mutation in patients with isolated dominant hypomagnesaemia. Nephrol Dial Transplant 30: 952–957, 2015
Adalat S, Hayes WN, Bryant WA, Booth J, Woolf AS, Kleta R, et al.: HNF1B mutations are associated with a Gitelman-like tubulopathy that develops during childhood. Kidney Int Rep 4: 1304–1311, 2019
Kompatscher A, de Baaij JHF, Aboudehen K, Hoefnagels APWM, Igarashi P, Bindels RJM, et al.: Loss of transcriptional activation of the potassium channel Kir5.1 by HNF1 β drives autosomal dominant tubulointerstitial kidney disease. Kidney Int 92: 1145–1156, 2017
Ferrè S, Veenstra GJ, Bouwmeester R, Hoenderop JG, Bindels RJ: HNF-1B specifically regulates the transcription of the γ a-subunit of the Na + /K + -ATPase. Biochem Biophys Res Commun 404: 284–290, 2011
Bech AP, Wetzels JF, Bongers EMHF, Nijenhuis T: Thiazide responsiveness testing in patients with renal magnesium wasting and correlation with genetic analysis: A diagnostic test study. Am J Kidney Dis 68: 168–170, 2016
Nozu K, Iijima K, Kanda K, Nakanishi K, Yoshikawa N, Satomura K, et al.: The pharmacological characteristics of molecular-based inherited salt-losing tubulopathies. J Clin Endocrinol Metab 95: E511–E518, 2010
Jeck N, Konrad M, Peters M, Weber S, Bonzel KE, Seyberth HW: Mutations in the chloride channel gene, CLCNKB, leading to a mixed Bartter-Gitelman phenotype. Pediatr Res 48: 754–758, 2000
Reilly RF, Huang CL: The mechanism of hypocalciuria with NaCl cotransporter inhibition. Nat Rev Nephrol 7: 669–674, 2011
Kovacikova J, Winter C, Loffing-Cueni D, Loffing J, Finberg KE, Lifton RP, et al.: The connecting tubule is the main site of the furosemide-induced urinary acidification by the vacuolar H + -ATPase. Kidney Int 70: 1706–1716, 2006
Roshan M, Kabekkodu SP, Vijaya PH, Manjunath K, Graw J: Analysis of mitochondrial DNA variations in Indian patients with congenital cataract. Mol Vis 18: 181–193, 2012
Elisaf M, Panteli K, Theodorou J, Siamopoulos KC: Fractional excretion of magnesium in normal subjects and in patients with hypomagnesemia. Magnes Res 10: 315–320, 1997

Auteurs

Daan Viering (D)

Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.

Karl P Schlingmann (KP)

Department of General Pediatrics, University Children's Hospital, Münster, Germany.

Marguerite Hureaux (M)

Reference Center for Hereditary Kidney and Childhood Diseases (Maladies rénales héréditaires de l'enfant et de l'adulte [MARHEA]), Paris, France.
Department of Genetics, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Paris, France.

Tom Nijenhuis (T)

Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.

Andrew Mallett (A)

Department of Renal Medicine, Townsville University Hospital, Townsville, Australia.
Queensland Conjoint Renal Genetics Service - Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia.

Melanie M Y Chan (MMY)

Department of Renal Medicine, University College London, London, United Kingdom.

André van Beek (A)

Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

Albertien M van Eerde (AM)

Genetics Department, University Medical Center Utrecht, Utrecht, The Netherlands.

Jean-Marie Coulibaly (JM)

Service of Nephrology, Yves Le Foll Hospital, Saint Brieuc, France.

Marion Vallet (M)

Department of Physiological Functional Investigations, Centre Hospitalier Universitaire de Toulouse, Université Paul Sabatier, Toulouse, France.

Stéphane Decramer (S)

Pediatric Nephrology, Internal Medicine and Rheumatology, Southwest Renal Rare Diseases Centre (SORARE), University Children's Hospital, Toulouse, France.

Solenne Pelletier (S)

Department of Nephrology, University Hospital-Lyon Sud, Lyon, France.

Günter Klaus (G)

Kuratorium für Heimdialyse Pediatric Kidney Center, Marburg, Germany.

Martin Kömhoff (M)

University Children's Hospital, Philipps-University, Marburg, Germany.

Rolf Beetz (R)

Johannes Gutenberg Universität Mainz, Zentrum für Kinder- und Jugendmedizin, Mainz, Germany.

Chirag Patel (C)

Queensland Conjoint Renal Genetics Service - Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia.

Mohan Shenoy (M)

Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester, United Kingdom.

Eric J Steenbergen (EJ)

Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands.

Glenn Anderson (G)

Department of Pathology, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, United Kingdom.

Ernie M H F Bongers (EMHF)

Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.

Carsten Bergmann (C)

Limbach Genetics, Medizinische Genetik Mainz, Prof. Bergmann & Kollegen, Mainz, Germany.
Department of Medicine, Division of Nephrology, University Hospital Freiburg, Germany.

Daan Panneman (D)

Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands.

Richard J Rodenburg (RJ)

Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands.

Robert Kleta (R)

Department of Renal Medicine, University College London, London, United Kingdom.
Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.

Pascal Houillier (P)

Reference Center for Hereditary Kidney and Childhood Diseases (Maladies rénales héréditaires de l'enfant et de l'adulte [MARHEA]), Paris, France.
Centre de Recherche des Cordeliers, Sorbonne Université, Institut National de la Santé et de Recherche Médicale (INSERM), Université de Paris, Centre National de la Recherche Scientifique (CNRS), Paris, France.
Department of Physiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.

Martin Konrad (M)

Department of General Pediatrics, University Children's Hospital, Münster, Germany.

Rosa Vargas-Poussou (R)

Reference Center for Hereditary Kidney and Childhood Diseases (Maladies rénales héréditaires de l'enfant et de l'adulte [MARHEA]), Paris, France.
Department of Genetics, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Paris, France.
Centre de Recherche des Cordeliers, Sorbonne Université, Institut National de la Santé et de Recherche Médicale (INSERM), Université de Paris, Centre National de la Recherche Scientifique (CNRS), Paris, France.

Nine V A M Knoers (NVAM)

Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

Detlef Bockenhauer (D)

Department of Renal Medicine, University College London, London, United Kingdom.
Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.

Jeroen H F de Baaij (JHF)

Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH