Molecular mechanism and therapeutic targeting of necrosis, apoptosis, pyroptosis, and autophagy in cardiovascular disease.
Journal
Chinese medical journal
ISSN: 2542-5641
Titre abrégé: Chin Med J (Engl)
Pays: China
ID NLM: 7513795
Informations de publication
Date de publication:
04 Oct 2021
04 Oct 2021
Historique:
pubmed:
6
10
2021
medline:
15
12
2021
entrez:
5
10
2021
Statut:
epublish
Résumé
Cell death occurs in various tissues and organs in the body. It is a physiological or pathological process that has different effects. It is of great significance in maintaining the morphological function of cells and clearing abnormal cells. Pyroptosis, apoptosis, and necrosis are all modes of cell death that have been studied extensively by many experts and scholars, including studies on their effects on the liver, kidney, the heart, other organs, and even the whole body. The heart, as the most important organ of the body, should be a particular focus. This review summarizes the mechanisms underlying the various cell death modes and the relationship between the various mechanisms and heart diseases. The current research status for heart therapy is discussed from the perspective of pathogenesis.
Identifiants
pubmed: 34608069
doi: 10.1097/CM9.0000000000001772
pii: 00029330-202111200-00001
pmc: PMC8631411
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
2647-2655Informations de copyright
Copyright © 2021 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license.
Références
Yamaguchi O, Higuchi Y, Hirotani S, Kashiwase K, Nakayama H, Hikoso S, et al. Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proc Natl Acad Sci U S A 2003; 100:15883–15888. doi: 10.1073/pnas.2136717100.
doi: 10.1073/pnas.2136717100
Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 2006; 86:369–408. doi: 10.1152/physrev.00004.2005.
doi: 10.1152/physrev.00004.2005
Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 2017; 135:e146–e603. doi: 10.1161/CIR.0000000000000485.
doi: 10.1161/CIR.0000000000000485
Nag AC. Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 1980; 28:41–61.
Bulluck H, Rosmini S, Abdel-Gadir A, White SK, Bhuva AN, Treibel TA, et al. Residual myocardial iron following intramyocardial hemorrhage during the convalescent phase of reperfused ST-segment-elevation myocardial infarction and adverse left ventricular remodeling. Circ Cardiovasc Imaging 2016; 9:e004940doi: 10.1161/CIRCIMAGING.116.004940.
doi: 10.1161/CIRCIMAGING.116.004940
Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 2012; 249:158–175. doi: 10.1111/j.1600-065X.2012.01146.x.
doi: 10.1111/j.1600-065X.2012.01146.x
Shaham S, Horvitz HR. Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. Genes Dev 1996; 10:578–591. doi: 10.1101/gad.10.5.578.
doi: 10.1101/gad.10.5.578
Syntichaki P, Xu K, Driscoll M, Tavernarakis N. Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature 2002; 419:939–944. doi: 10.1038/nature01108.
doi: 10.1038/nature01108
Bianchi L, Gerstbrein B, Frøkjaer-Jensen C, Royal DC, Mukherjee G, Royal MA, et al. The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation. Nat Neurosci 2004; 7:1337–1344. doi: 10.1038/nn1347.
doi: 10.1038/nn1347
Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 2005; 434:652–658. doi: 10.1038/nature03317.
doi: 10.1038/nature03317
Kitsis RN, Molkentin JD. Apoptotic cell death “Nixed” by an ER-mitochondrial necrotic pathway. Proc Natl Acad Sci U S A 2010; 107:9031–9032. doi: 10.1073/pnas.1003827107.
doi: 10.1073/pnas.1003827107
Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res 2003; 93:292–301. doi: 10.1161/01.RES.0000087542.26971.D4.
doi: 10.1161/01.RES.0000087542.26971.D4
Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 2014; 54:133–146. doi: 10.1016/j.molcel.2014.03.003.
doi: 10.1016/j.molcel.2014.03.003
Brenner D, Blaser H, Mak TW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 2015; 15:362–374. doi: 10.1038/nri3834.
doi: 10.1038/nri3834
Declercq W, Berghe TV, Vandenabeele P. RIP kinases at the crossroads of cell death and survival. Cell 2009; 138:229–232. doi: 10.1016/j.cell.2009.07.006.
doi: 10.1016/j.cell.2009.07.006
Wang Z, Jiang H, Chen S, Du F, Wang X. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 2012; 148:228–243. doi: 10.1016/j.cell.2011.11.030.
doi: 10.1016/j.cell.2011.11.030
Karch J, Kwong JQ, Burr AR, Sargent MA, Elrod JW, Peixoto PM, et al. Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. Elife 2013; 2:e00772doi: 10.7554/eLife.00772.
doi: 10.7554/eLife.00772
Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9:47–59. doi: 10.1038/nrm2308.
doi: 10.1038/nrm2308
Galluzzi L, Vitale I, Aaronson S, Abrams J, Adam D, Agostinis P. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25:486–541. doi: 10.1038/s41418-017-0012-4.
doi: 10.1038/s41418-017-0012-4
Shan B, Pan H, Najafov A, Yuan J. Necroptosis in development and diseases. Genes Dev 2018; 32:327–340. doi: 10.1101/gad.312561.118.
doi: 10.1101/gad.312561.118
Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81:505–512. doi: 10.1016/0092-8674(95)90071-3.
doi: 10.1016/0092-8674(95)90071-3
Jeng MJ, Soong WJ, Lee YS, Tsao PC, Yang CF, Chiu SY, et al. Meconium exposure dependent cell death and apoptosis in human alveolar epithelial cells. Pediatr Pulmonol 2010; 45:816–823. doi: 10.1002/ppul.21262.
doi: 10.1002/ppul.21262
Hu Q, Zhang T, Yi L, Zhou X, Mi M. Dihydromyricetin inhibits NLRP3 inflammasome-dependent pyroptosis by activating the Nrf2 signaling pathway in vascular endothelial cells. Biofactors 2018; 44:123–136. doi: 10.1002/biof.1395.
doi: 10.1002/biof.1395
Reisetter AC, Stebounova LV, Baltrusaitis J, Powers L, Gupta A, Grassian VH, et al. Induction of inflammasome-dependent pyroptosis by carbon black nanoparticles. J Biol Chem 2011; 286:21844–21852. doi: 10.1074/jbc.M111.238519.
doi: 10.1074/jbc.M111.238519
Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol 2017; 18:861–869. doi: 10.1038/ni.3772.
doi: 10.1038/ni.3772
Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 2017; 277:61–75. doi: 10.1111/imr.12534.
doi: 10.1111/imr.12534
He X, Qian Y, Li Z, Fan EK, Li Y, Wu L, et al. TLR4-upregulated IL-1β and IL-1RI promote alveolar macrophage pyroptosis and lung inflammation through an autocrine mechanism. Sci Rep 2016; 6:31663doi: 10.1038/srep31663.
doi: 10.1038/srep31663
Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8:741–752. doi: 10.1038/nrm2239.
doi: 10.1038/nrm2239
Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest 2005; 115:2679–2688. doi: 10.1172/JCI26390.
doi: 10.1172/JCI26390
van Empel VP, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ. Myocyte apoptosis in heart failure. Cardiovasc Res 2005; 67:21–29. doi: 10.1016/j.cardiores.2005.04.012.
doi: 10.1016/j.cardiores.2005.04.012
Hikoso S, Ikeda Y, Yamaguchi O, Takeda T, Higuchi Y, Hirotani S, et al. Progression of heart failure was suppressed by inhibition of apoptosis signal-regulating kinase 1 via transcoronary gene transfer. J Am Coll Cardiol 2007; 50:453–462. doi: 10.1016/j.jacc.2007.03.053.
doi: 10.1016/j.jacc.2007.03.053
Chen K, Zhang J, Zhang W, Zhang J, Yang J, Li K, et al. ATP-P2X4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol 2013; 45:932–943. doi: 10.1016/j.biocel.2013.02.009.
doi: 10.1016/j.biocel.2013.02.009
Li X, Dai Y, Yan S, Shi Y, Han B, Li J, et al. Down-regulation of lncRNA KCNQ1OT1 protects against myocardial ischemia/reperfusion injury following acute myocardial infarction. Biochem Biophys Res Commun 2017; 491:1026–1033. doi: 10.1016/j.bbrc.2017.08.005.
doi: 10.1016/j.bbrc.2017.08.005
Bai Y, Sun X, Chu Q, Li A, Qin Y, Li Y, et al. Caspase-1 regulates Ang II-induced cardiomyocyte hypertrophy via up-regulation of IL-1β. Biosci Rep 2018; 38:BSR20171438doi: 10.1042/BSR20171438.
doi: 10.1042/BSR20171438
Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, et al. Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A 2005; 102:13807–13812. doi: 10.1073/pnas.0506843102.
doi: 10.1073/pnas.0506843102
Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 2006; 281:29776–29787. doi: 10.1074/jbc.M603783200.
doi: 10.1074/jbc.M603783200
Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 2000; 406:906–910. doi: 10.1038/35022604.
doi: 10.1038/35022604
Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 2007; 13:619–624. doi: 10.1038/nm1574.
doi: 10.1038/nm1574
Luedde M, Lutz M, Carter N, Sosna J, Jacoby C, Vucur M, et al. RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc Res 2014; 103:206–216. doi: 10.1093/cvr/cvu146.
doi: 10.1093/cvr/cvu146
Nishida K, Yamaguchi O, Hirotani S, Hikoso S, Higuchi Y, Watanabe T, et al. p38alpha mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload. Mol Cell Biol 2004; 24:10611–10620. doi: 10.1128/MCB.24.24.10611-10620.2004.
doi: 10.1128/MCB.24.24.10611-10620.2004
Sun Y, Yao X, Zhang QJ, Zhu M, Liu ZP, Ci B, et al. Beclin-1-dependent autophagy protects the heart during sepsis. Circulation 2018; 138:2247–2262. doi: 10.1161/CIRCULATIONAHA.117.032821.
doi: 10.1161/CIRCULATIONAHA.117.032821
Zeng ZL, Lin XL, Tan LL, Liu YM, Qu K, Wang Z. MicroRNAs: important regulators of induced pluripotent stem cell generation and differentiation. Stem Cell Rev Rep 2018; 14:71–81. doi: 10.1007/s12015-017-9785-6.
doi: 10.1007/s12015-017-9785-6
Luo B, Li B, Wang W, Liu X, Liu X, Xia Y, et al. Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting NLRP3 inflammasome and MAPK pathways in a type 2 diabetes rat model. Cardiovasc Drugs Ther 2014; 28:33–43. doi: 10.1007/s10557-013-6498-1.
doi: 10.1007/s10557-013-6498-1
Han Y, Qiu H, Pei X, Fan Y, Tian H, Geng J. Low-dose sinapic acid abates the pyroptosis of macrophages by downregulation of lncRNA-MALAT1 in rats with diabetic atherosclerosis. J Cardiovasc Pharmacol 2018; 71:104–112. doi: 10.1097/FJC.0000000000000550.
doi: 10.1097/FJC.0000000000000550
Chen J, Wang B, Lai J, Braunstein Z, He M, Ruan G, et al. Trimetazidine attenuates cardiac dysfunction in endotoxemia and sepsis by promoting neutrophil migration. Front Immunol 2018; 9:2015doi: 10.3389/fimmu.2018.02015.
doi: 10.3389/fimmu.2018.02015
Lochner A, Marais E, Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: what's new? A review. J Pineal Res 2018; 65:e12490doi: 10.1111/jpi.12490.
doi: 10.1111/jpi.12490
Wan Y, Xu L, Wang Y, Tuerdi N, Ye M, Qi R. Preventive effects of astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. Eur J Pharmacol 2018; 833:545–554. doi: 10.1016/j.ejphar.2018.06.016.
doi: 10.1016/j.ejphar.2018.06.016
Chen A, Chen Z, Xia Y, Lu D, Yang X, Sun A, et al. Liraglutide attenuates NLRP3 inflammasome-dependent pyroptosis via regulating SIRT1/NOX4/ROS pathway in H9c2 cells. Biochem Biophys Res Commun 2018; 499:267–272. doi: 10.1016/j.bbrc.2018.03.142.
doi: 10.1016/j.bbrc.2018.03.142
Zhang WX, He BM, Wu Y, Qiao JF, Peng ZY. Melatonin protects against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice. Life Sci 2019; 217:8–15. doi: 10.1016/j.lfs.2018.11.055.
doi: 10.1016/j.lfs.2018.11.055
Chen J, Lai J, Yang L, Ruan G, Chaugai S, Ning Q, et al. Trimetazidine prevents macrophage-mediated septic myocardial dysfunction via activation of the histone deacetylase sirtuin 1. Br J Pharmacol 2016; 173:545–561. doi: 10.1111/bph.13386.
doi: 10.1111/bph.13386
Yao Y, Sun F, Lei M. miR-25 inhibits sepsis-induced cardiomyocyte apoptosis by targetting PTEN. Biosci Rep 2018; 38:BSR20171511doi: 10.1042/BSR20171511.
doi: 10.1042/BSR20171511
Zhang L, Zheng YL, Hu RH, Zhu L, Hu CC, Cheng F, et al. Annexin A1 mimetic peptide AC2-26 inhibits sepsis-induced cardiomyocyte apoptosis through LXA4/PI3K/AKT signaling pathway. Curr Med Sci 2018; 38:997–1004. doi: 10.1007/s11596-018-1975-1.
doi: 10.1007/s11596-018-1975-1
Luo R, Chen X, Ma H, Yao C, Liu M, Tao J, et al. Myocardial caspase-3 and NF-κB activation promotes calpain-induced septic apoptosis: the role of Akt/eNOS/NO pathway. Life Sci 2019; 222:195–202. doi: 10.1016/j.lfs.2019.02.048.
doi: 10.1016/j.lfs.2019.02.048
Lu Y, Yang Y, He X, Dong S, Wang W, Wang D, et al. Esmolol reduces apoptosis and inflammation in early sepsis rats with abdominal infection. Am J Emerg Med 2017; 35:1480–1484. doi: 10.1016/j.ajem.2017.04.056.
doi: 10.1016/j.ajem.2017.04.056
Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W, et al. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol 2019; 24:101215doi: 10.1016/j.redox.2019.101215.
doi: 10.1016/j.redox.2019.101215
Zhu YF, Wang R, Chen W, Cao YD, Li LP, Chen X. MiR-133a-3p attenuates cardiomyocyte hypertrophy through inhibiting pyroptosis activation by targeting IKKε. Acta Histochem 2021; 123:151653doi: 10.1016/j.acthis.2020.151653.
doi: 10.1016/j.acthis.2020.151653
Qiu Z, He Y, Ming H, Lei S, Leng Y, Xia ZY. Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J Diabetes Res 2019; 2019:8151836doi: 10.1155/2019/8151836.
doi: 10.1155/2019/8151836
Liu H, Sun Y, Zhang Y, Yang G, Guo L, Zhao Y, et al. Role of thymoquinone in cardiac damage caused by sepsis from BALB/c mice. Inflammation 2019; 42:516–525. doi: 10.1007/s10753-018-0909-1.
doi: 10.1007/s10753-018-0909-1
Song P, Shen DF, Meng YY, Kong CY, Zhang X, Yuan YP, et al. Geniposide protects against sepsis-induced myocardial dysfunction through AMPKα-dependent pathway. Free Radic Biol Med 2020; 152:186–196. doi: 10.1016/j.freeradbiomed.2020.02.011.
doi: 10.1016/j.freeradbiomed.2020.02.011
Shen S, He F, Cheng C, Xu B, Sheng J. Uric acid aggravates myocardial ischemia-reperfusion injury via ROS/NLRP3 pyroptosis pathway. Biomed Pharmacother 2021; 133:110990doi: 10.1016/j.biopha.2020.110990.
doi: 10.1016/j.biopha.2020.110990
Zhang W, Tao A, Lan T, Cepinskas G, Kao R, Martin CM, et al. Carbon monoxide releasing molecule-3 improves myocardial function in mice with sepsis by inhibiting NLRP3 inflammasome activation in cardiac fibroblasts. Basic Res Cardiol 2017; 112:16doi: 10.1007/s00395-017-0603-8.
doi: 10.1007/s00395-017-0603-8
Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med 2016; 22:175–182. doi: 10.1038/nm.4017.
doi: 10.1038/nm.4017
Wang K, Liu F, Liu CY, An T, Zhang J, Zhou LY, et al. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ 2016; 23:1394–1405. doi: 10.1038/cdd.2016.28.
doi: 10.1038/cdd.2016.28
Pi QZ, Wang XW, Jian ZL, Chen D, Zhang C, Wu QC. Melatonin alleviates cardiac dysfunction via increasing sirt1-mediated beclin-1 deacetylation and autophagy during sepsis. Inflammation 2021; 44:1184–1193. doi: 10.1007/s10753-021-01413-2.
doi: 10.1007/s10753-021-01413-2
Wang F, Min X, Hu SY, You DL, Jiang TT, Wang L, et al. Hypoxia/reoxygenation-induced upregulation of miRNA-542-5p aggravated cardiomyocyte injury by repressing autophagy. Hum Cell 2021; 34:349–359. doi: 10.1007/s13577-020-00466-z.
doi: 10.1007/s13577-020-00466-z