Bee Trypanosomatids: First Steps in the Analysis of the Genetic Variation and Population Structure of Lotmaria passim, Crithidia bombi and Crithidia mellificae.
Crithidia bombi
Crithidia mellificae
Genetic diversity
Lotmaria passim
Population genetics
Population structure
Journal
Microbial ecology
ISSN: 1432-184X
Titre abrégé: Microb Ecol
Pays: United States
ID NLM: 7500663
Informations de publication
Date de publication:
Oct 2022
Oct 2022
Historique:
received:
30
07
2021
accepted:
22
09
2021
pubmed:
6
10
2021
medline:
3
11
2022
entrez:
5
10
2021
Statut:
ppublish
Résumé
Trypanosomatids are among the most prevalent parasites in bees but, despite the fact that their impact on the colonies can be quite important and that their infectivity may potentially depend on their genotypes, little is known about the population diversity of these pathogens. Here we cloned and sequenced three non-repetitive single copy loci (DNA topoisomerase II, glyceraldehyde-3-phosphate dehydrogenase and RNA polymerase II large subunit, RPB1) to produce new genetic data from Crithidia bombi, C. mellificae and Lotmaria passim isolated from honeybees and bumblebees. These were analysed by applying population genetic tools in order to quantify and compare their variability within and between species, and to obtain information on their demography and population structure. The general pattern for the three species was that (1) they were subject to the action of purifying selection on nonsynonymous variants, (2) the levels of within species diversity were similar irrespective of the host, (3) there was evidence of recombination among haplotypes and (4) they showed no haplotype structuring according to the host. C. bombi exhibited the lowest levels of synonymous variation (π
Identifiants
pubmed: 34609533
doi: 10.1007/s00248-021-01882-w
pii: 10.1007/s00248-021-01882-w
pmc: PMC9622509
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
856-867Informations de copyright
© 2021. The Author(s).
Références
Heredity (Edinb). 2010 Feb;104(2):135-40
pubmed: 19812614
Sci Rep. 2016 Mar 29;6:23704
pubmed: 27021793
Ecol Evol. 2014 Nov;4(22):4399-428
pubmed: 25540699
BMC Res Notes. 2014 Sep 15;7:649
pubmed: 25223634
Trends Parasitol. 2018 Jun;34(6):466-480
pubmed: 29605546
Genetics. 2002 Mar;160(3):1231-41
pubmed: 11901136
Genetics. 1989 Nov;123(3):597-601
pubmed: 2599369
Genetics. 1992 Jun;131(2):479-91
pubmed: 1644282
PLoS One. 2018 Jan 5;13(1):e0189738
pubmed: 29304093
Mol Biochem Parasitol. 2005 Sep;143(1):12-9
pubmed: 15941603
Infect Genet Evol. 2011 Apr;11(3):564-71
pubmed: 21252000
Theor Popul Biol. 1975 Apr;7(2):256-76
pubmed: 1145509
Evolution. 1999 Apr;53(2):426-434
pubmed: 28565410
Mol Biol Evol. 2017 Dec 1;34(12):3299-3302
pubmed: 29029172
Mol Biol Evol. 1999 Jan;16(1):37-48
pubmed: 10331250
Mol Biol Evol. 2008 Jun;25(6):1007-15
pubmed: 18195052
Mol Biol Evol. 1999 Jul;16(7):1003-5
pubmed: 10406117
Int J Parasitol. 2012 Jan;42(1):49-61
pubmed: 22138016
Parasitology. 2004 Aug;129(Pt 2):147-58
pubmed: 15376774
Genetics. 2003 Jan;163(1):375-94
pubmed: 12586723
Parasit Vectors. 2017 Jun 8;10(1):287
pubmed: 28595622
Nature. 1991 Jun 20;351(6328):652-4
pubmed: 1904993
J Invertebr Pathol. 2015 Sep;130:21-7
pubmed: 26146231
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W157-62
pubmed: 18515345
Trends Ecol Evol. 2017 Feb;32(2):141-152
pubmed: 28089120
Trends Genet. 2002 Sep;18(9):486
pubmed: 12175810
Genetics. 2001 Dec;159(4):1805-17
pubmed: 11779816
Mol Ecol Resour. 2013 Mar;13(2):225-9
pubmed: 23190789
mSphere. 2019 Sep 11;4(5):
pubmed: 31511368
J Appl Microbiol. 2010 Jul;109(1):107-15
pubmed: 20015206
Ecol Evol. 2012 May;2(5):930-40
pubmed: 22837838
Ecol Evol. 2017 Feb 15;7(6):1850-1857
pubmed: 28331592
PLoS One. 2013 Aug 26;8(8):e72443
pubmed: 23991113
Nature. 1973 Nov 9;246(5428):96-8
pubmed: 4585855
Syst Biol. 2008 Feb;57(1):58-75
pubmed: 18275002
Genetics. 1985 Sep;111(1):147-64
pubmed: 4029609
Mol Ecol Resour. 2010 May;10(3):564-7
pubmed: 21565059
Mol Biol Evol. 2014 Apr;31(4):1010-28
pubmed: 24489114
Sci Rep. 2021 May 27;11(1):11233
pubmed: 34045562
Mol Ecol. 2002 Sep;11(9):1591-604
pubmed: 12207711
Trends Parasitol. 2013 Jan;29(1):43-52
pubmed: 23246083
Pathogens. 2021 Aug 17;10(8):
pubmed: 34451508
Microbiologyopen. 2012 Dec;1(4):362-72
pubmed: 23233373
J Eukaryot Microbiol. 2015 Sep-Oct;62(5):567-83
pubmed: 25712037
Ecol Evol. 2013 Feb;3(2):298-311
pubmed: 23467539
Environ Microbiol Rep. 2017 Apr;9(2):169-173
pubmed: 28085231
J Invertebr Pathol. 2016 Jan;133:73-82
pubmed: 26678506
Proc Biol Sci. 2006 May 7;273(1590):1073-8
pubmed: 16600883
Int J Parasitol. 2020 Nov;50(13):1117-1124
pubmed: 32822679
Proc Biol Sci. 2015 Aug 22;282(1813):20151371
pubmed: 26246556
J Invertebr Pathol. 2018 Mar;153:147-155
pubmed: 29550403
Sci Rep. 2020 Jun 26;10(1):10454
pubmed: 32591554
PLoS Pathog. 2015 Aug 28;11(8):e1005127
pubmed: 26317207
J Eukaryot Microbiol. 2010 Jul-Aug;57(4):337-45
pubmed: 20497286
Genetics. 1989 Nov;123(3):585-95
pubmed: 2513255
J Invertebr Pathol. 2018 May;154:37-41
pubmed: 29608918
Curr Biol. 2009 Apr 28;19(8):655-60
pubmed: 19285399
Parasitology. 2019 Jan;146(1):1-27
pubmed: 29898792
PLoS Negl Trop Dis. 2019 Jul 10;13(7):e0007527
pubmed: 31291252
BMC Genomics. 2017 Jan 11;18(1):69
pubmed: 28077077