Technical Note: Break-even dose level for hypofractionated treatment schedules.
BED
LQ model
LQ-L model
hypofractionation
isoeffect
Journal
Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746
Informations de publication
Date de publication:
Nov 2021
Nov 2021
Historique:
revised:
03
09
2021
received:
14
06
2021
accepted:
24
09
2021
pubmed:
6
10
2021
medline:
18
11
2021
entrez:
5
10
2021
Statut:
ppublish
Résumé
To derive the isodose line R relative to the prescription dose below which irradiated normal tissue (NT) regions benefit from a hypofractionated schedule with an isoeffective dose to the tumor. To apply the formalism to clinical case examples. From the standard biologically effective dose (BED) equation based on the linear-quadratic (LQ) model, the BED of an NT that receives a relative proportion r of the prescribed dose per fraction for a given α/β-ratio of the tumor, (α/β) The formalism provides the equations to derive the BED of an NT as function of dose per fraction for an isoeffective dose to the tumor and the corresponding break-even isodose line R. For generic α/β-ratios of (α/β) The formalism may be used to estimate below which relative isodose line R there will be a differential sparing of NT when increasing hypofractionation. More generally, it allows to assess changes of the therapeutic index for sets of isoeffective treatment schedules at different relative dose levels compared to a reference schedule in a compact manner.
Identifiants
pubmed: 34609744
doi: 10.1002/mp.15267
pmc: PMC9298418
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7534-7540Subventions
Organisme : ISREC Foundation, thanks to Biltema donation,
Organisme : Fondation pour le soutien de la recherche et du développement de l'oncologie (FSRDO)
Informations de copyright
© 2021 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
Références
Br J Radiol. 1991 Feb;64(758):133-41
pubmed: 2004204
Math Med Biol. 2016 Jun;33(2):211-52
pubmed: 25980967
Med Phys. 2021 Nov;48(11):7534-7540
pubmed: 34609744
Med Phys. 2005 Dec;32(12):3666-77
pubmed: 16475766
Med Phys. 2020 Oct;47(10):5383-5391
pubmed: 32583529
Med Phys. 2008 Sep;35(9):4161-72
pubmed: 18841869
Int J Radiat Oncol Biol Phys. 2012 Nov 1;84(3):829-33
pubmed: 22417807
Int J Radiat Oncol Biol Phys. 2013 Jan 1;85(1):e81-7
pubmed: 23141886
Technol Cancer Res Treat. 2013 Apr;12(2):183-92
pubmed: 23098282
Neurosurgery. 2009 Feb;64(2 Suppl):A44-53
pubmed: 19165073
Br J Radiol. 2010 Jul;83(991):554-68
pubmed: 20603408
Br J Radiol. 1990 Apr;63(748):290-4
pubmed: 2346867
Phys Med Biol. 2013 Jan 7;58(1):159-67
pubmed: 23221166
J Radiosurg SBRT. 2020;7(1):1-4
pubmed: 32802572
Int J Radiat Oncol Biol Phys. 2021 May 1;110(1):253-254
pubmed: 33864825
Int J Radiat Oncol Biol Phys. 2021 May 1;110(1):21-34
pubmed: 30836165
Phys Med Biol. 2000 Jan;45(1):159-70
pubmed: 10661589
Phys Med. 2019 Nov;67:185-191
pubmed: 31751875
Int J Radiat Oncol Biol Phys. 2000 Jul 15;47(5):1379-84
pubmed: 10889393
Int J Radiat Oncol Biol Phys. 2013 Apr 1;85(5):1159-60
pubmed: 23517805
Clin Oncol (R Coll Radiol). 2001;13(2):71-81
pubmed: 11373882
Phys Med. 2015 Dec;31(8):1060-1064
pubmed: 26429382
Radiother Oncol. 2013 Oct;109(1):13-20
pubmed: 24183066
Semin Radiat Oncol. 2008 Oct;18(4):234-9
pubmed: 18725109
Phys Med Biol. 2009 Mar 21;54(6):1593-608
pubmed: 19229092
Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3):782-8
pubmed: 19577855
Acta Oncol. 2010 Oct;49(7):1052-7
pubmed: 20831495
Med Phys. 2015 Nov;42(11):6203-10
pubmed: 26520713
Med Phys. 2013 Aug;40(8):084101
pubmed: 23927363
Phys Med Biol. 2016 Jan 7;61(1):338-64
pubmed: 26679572